On the tree graph of a connected graph
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 501-510.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph T(G,C) that has one vertex for each spanning tree of G, in which two trees T and T' are adjacent if their symmetric difference consists of two edges and the unique cycle contained in T ∪ T' is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.
Keywords: tree graph, property Δ*, property Δ⁺
@article{DMGT_2008_28_3_a9,
     author = {Figueroa, Ana and Rivera-Campo, Eduardo},
     title = {On the tree graph of a connected graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {501--510},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a9/}
}
TY  - JOUR
AU  - Figueroa, Ana
AU  - Rivera-Campo, Eduardo
TI  - On the tree graph of a connected graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 501
EP  - 510
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a9/
LA  - en
ID  - DMGT_2008_28_3_a9
ER  - 
%0 Journal Article
%A Figueroa, Ana
%A Rivera-Campo, Eduardo
%T On the tree graph of a connected graph
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 501-510
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a9/
%G en
%F DMGT_2008_28_3_a9
Figueroa, Ana; Rivera-Campo, Eduardo. On the tree graph of a connected graph. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 501-510. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a9/

[1] H.J. Broersma and X. Li, The connectivity of the of the leaf-exchange spanning tree graph of a graph, Ars. Combin. 43 (1996) 225-231.

[2] F. Harary, R.J. Mokken and M. Plantholt, Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits and Systems 30 (1983) 429-432, doi: 10.1109/TCS.1983.1085385.

[3] K. Heinrich and G. Liu, A lower bound on the number of spanning trees with k endvertices, J. Graph Theory 12 (1988) 95-100, doi: 10.1002/jgt.3190120110.

[4] X. Li, V. Neumann-Lara and E. Rivera-Campo, On a tree graph defined by a set of cycles, Discrete Math. 271 (2003) 303-310, doi: 10.1016/S0012-365X(03)00132-8.

[5] F.J. Zhang and Z. Chen, Connectivity of (adjacency) tree graphs, J. Xinjiang Univ. Natur. Sci. 3 (1986) 1-5.