Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a9, author = {Figueroa, Ana and Rivera-Campo, Eduardo}, title = {On the tree graph of a connected graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {501--510}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a9/} }
Figueroa, Ana; Rivera-Campo, Eduardo. On the tree graph of a connected graph. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 501-510. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a9/
[1] H.J. Broersma and X. Li, The connectivity of the of the leaf-exchange spanning tree graph of a graph, Ars. Combin. 43 (1996) 225-231.
[2] F. Harary, R.J. Mokken and M. Plantholt, Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits and Systems 30 (1983) 429-432, doi: 10.1109/TCS.1983.1085385.
[3] K. Heinrich and G. Liu, A lower bound on the number of spanning trees with k endvertices, J. Graph Theory 12 (1988) 95-100, doi: 10.1002/jgt.3190120110.
[4] X. Li, V. Neumann-Lara and E. Rivera-Campo, On a tree graph defined by a set of cycles, Discrete Math. 271 (2003) 303-310, doi: 10.1016/S0012-365X(03)00132-8.
[5] F.J. Zhang and Z. Chen, Connectivity of (adjacency) tree graphs, J. Xinjiang Univ. Natur. Sci. 3 (1986) 1-5.