Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a3, author = {Fron\v{c}ek, Dalibor}, title = {Product rosy labeling of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {431--439}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a3/} }
Fronček, Dalibor. Product rosy labeling of graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 431-439. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a3/
[1] R.E.L. Aldred and B.D. McKay, Graceful and harmonious labellings of trees, Bull. Inst. Combin. Appl. 23 (1998) 69-72.
[2] P. Eldergill, Decompositions of the complete graph with an even number of vertices (M.Sc. thesis, McMaster University, Hamilton, 1997).
[3] S. El-Zanati and C. Vanden Eynden, Factorizations of $K_{m,n}$ into spanning trees, Graphs Combin. 15 (1999) 287-293, doi: 10.1007/s003730050062.
[4] D. Fronček, Cyclic decompositions of complete graphs into spanning trees, Discuss. Math. Graph Theory 24 (2004) 345-353, doi: 10.7151/dmgt.1235.
[5] D. Fronček, Bi-cyclic decompositions of complete graphs into spanning trees, Discrete Math. 303 (2007) 1317-1322, doi: 10.1016/j.disc.2003.11.061.
[6] D. Fronček, P. Kovár, T. Kovárová and M. Kubesa, Factorizations of complete graphs into caterpillars of diameter 5, submitted for publication.
[7] D. Fronček and T. Kovárová, 2n-cyclic labelings of graphs, Ars Combin., accepted.
[8] D. Fronček and M. Kubesa, Factorizations of complete graphs into spanning trees, Congr. Numer. 154 (2002) 125-134.
[9] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, DS6 (2007).
[10] S.W. Golomb, How to number a graph, in: Graph Theory and Computing, ed. R.C. Read (Academic Press, New York, 1972) 23-37.
[11] P. Hrnciar and A. Haviar, All trees of diameter five are graceful, Discrete Math. 233 (2001) 133-150, doi: 10.1016/S0012-365X(00)00233-8.
[12] M. Kubesa, Factorizations of complete graphs into [n,r,s,2] -caterpillars of diameter 5 with maximum center, AKCE Int. J. Graphs Combin. 1 (2004) 135-147.
[13] M. Kubesa, Spanning tree factorizations of complete graphs, J. Combin. Math. Combin. Comput. 52 (2005) 33-49.
[14] M. Kubesa, Factorizations of complete graphs into [r,s,2,2] -caterpillars of diameter 5, J. Combin. Math. Combin. Comput. 54 (2005) 187-193.
[15] M. Kubesa, Graceful trees and factorizations of complete graphs into non-symmetric isomorphic trees, Util. Math. 68 (2005) 79-86.
[16] M. Kubesa, Trees with α-labelings and decompositions of complete graphs into non-symmetric isomorphic spanning trees, Discuss. Math. Graph Theory 25 (2005) 311-324, doi: 10.7151/dmgt.1284.
[17] M. Kubesa, Factorizations of complete graphs into [n,r,s,2] -caterpillars of diameter 5 with maximum end, AKCE Int. J. Graphs Combin. 3 (2006) 151-161.
[18] G. Ringel, Problem 25, Theory of Graphs and its Applications, Proceedings of the Symposium held in Smolenice in June 1963 (Prague, 1964) 162.
[19] G. Ringel, A. Llado and O. Serra, Decomposition of complete bipartite graphs into trees, DMAT Research Report 11 (1996) Univ. Politecnica de Catalunya.
[20] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris, 1967, 349-355.
[21] S.L. Zhao, All trees of diameter four are graceful, Graph Theory and its Applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., New York 576 (1989) 700-706.