On distinguishing and distinguishing chromatic numbers of hypercubes
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 419-429
Voir la notice de l'article provenant de la source Library of Science
The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ_D(G) of G.
Keywords:
distinguishing number, distinguishing chromatic number, hypercube, weak Cartesian product
@article{DMGT_2008_28_3_a2,
author = {Kl\"ockl, Werner},
title = {On distinguishing and distinguishing chromatic numbers of hypercubes},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {419--429},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/}
}
Klöckl, Werner. On distinguishing and distinguishing chromatic numbers of hypercubes. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 419-429. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/