Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a2, author = {Kl\"ockl, Werner}, title = {On distinguishing and distinguishing chromatic numbers of hypercubes}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {419--429}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/} }
Klöckl, Werner. On distinguishing and distinguishing chromatic numbers of hypercubes. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 419-429. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/
[1] M.O. Albertson, Distinguishing Cartesian powers of graphs, Electron. J. Combin. 12 (2005) N17.
[2] M.O. Albertson and K.L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996) R18.
[3] B. Bogstad and L.J. Cowen, The distinguishing number of hypercubes, Discrete Math. 283 (2004) 29-35, doi: 10.1016/j.disc.2003.11.018.
[4] M. Chan, The distinguishing number of the augmented cube and hypercube powers, Discrete Math. 308 (2008) 2330-2336, doi: 10.1016/j.disc.2006.09.056.
[5] J.O. Choi, S.G. Hartke and H. Kaul, Distinguishing chromatic number of Cartesian products of graphs, submitted.
[6] K.T. Collins and A.N. Trenk, The distinguishing chromatic number, Electr. J. Combin. 13 (2006) R16.
[7] W. Imrich, J. Jerebic and S. Klavžar, The distinguishing number of Cartesian products of complete graphs, Eur. J. Combin. 29 (2008) 922-927, doi: 10.1016/j.ejc.2007.11.018.
[8] W. Imrich and S. Klavžar, Product Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley-Interscience, New York, 2000). Structure and recognition, With a foreword by Peter Winkler.
[9] W. Imrich and S. Klavžar, Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006) 250-260, doi: 10.1002/jgt.20190.