On distinguishing and distinguishing chromatic numbers of hypercubes
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 419-429.

Voir la notice de l'article provenant de la source Library of Science

The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ_D(G) of G.
Keywords: distinguishing number, distinguishing chromatic number, hypercube, weak Cartesian product
@article{DMGT_2008_28_3_a2,
     author = {Kl\"ockl, Werner},
     title = {On distinguishing and distinguishing chromatic numbers of hypercubes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {419--429},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/}
}
TY  - JOUR
AU  - Klöckl, Werner
TI  - On distinguishing and distinguishing chromatic numbers of hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 419
EP  - 429
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/
LA  - en
ID  - DMGT_2008_28_3_a2
ER  - 
%0 Journal Article
%A Klöckl, Werner
%T On distinguishing and distinguishing chromatic numbers of hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 419-429
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/
%G en
%F DMGT_2008_28_3_a2
Klöckl, Werner. On distinguishing and distinguishing chromatic numbers of hypercubes. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 419-429. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/

[1] M.O. Albertson, Distinguishing Cartesian powers of graphs, Electron. J. Combin. 12 (2005) N17.

[2] M.O. Albertson and K.L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996) R18.

[3] B. Bogstad and L.J. Cowen, The distinguishing number of hypercubes, Discrete Math. 283 (2004) 29-35, doi: 10.1016/j.disc.2003.11.018.

[4] M. Chan, The distinguishing number of the augmented cube and hypercube powers, Discrete Math. 308 (2008) 2330-2336, doi: 10.1016/j.disc.2006.09.056.

[5] J.O. Choi, S.G. Hartke and H. Kaul, Distinguishing chromatic number of Cartesian products of graphs, submitted.

[6] K.T. Collins and A.N. Trenk, The distinguishing chromatic number, Electr. J. Combin. 13 (2006) R16.

[7] W. Imrich, J. Jerebic and S. Klavžar, The distinguishing number of Cartesian products of complete graphs, Eur. J. Combin. 29 (2008) 922-927, doi: 10.1016/j.ejc.2007.11.018.

[8] W. Imrich and S. Klavžar, Product Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley-Interscience, New York, 2000). Structure and recognition, With a foreword by Peter Winkler.

[9] W. Imrich and S. Klavžar, Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006) 250-260, doi: 10.1002/jgt.20190.