On distinguishing and distinguishing chromatic numbers of hypercubes
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 419-429

Voir la notice de l'article provenant de la source Library of Science

The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ_D(G) of G.
Keywords: distinguishing number, distinguishing chromatic number, hypercube, weak Cartesian product
@article{DMGT_2008_28_3_a2,
     author = {Kl\"ockl, Werner},
     title = {On distinguishing and distinguishing chromatic numbers of hypercubes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {419--429},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/}
}
TY  - JOUR
AU  - Klöckl, Werner
TI  - On distinguishing and distinguishing chromatic numbers of hypercubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 419
EP  - 429
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/
LA  - en
ID  - DMGT_2008_28_3_a2
ER  - 
%0 Journal Article
%A Klöckl, Werner
%T On distinguishing and distinguishing chromatic numbers of hypercubes
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 419-429
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/
%G en
%F DMGT_2008_28_3_a2
Klöckl, Werner. On distinguishing and distinguishing chromatic numbers of hypercubes. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 419-429. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a2/