Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a13, author = {Vijayakumar, Gurusamy}, title = {A result related to the largest eigenvalue of a tree}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {557--561}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a13/} }
Vijayakumar, Gurusamy. A result related to the largest eigenvalue of a tree. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 557-561. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a13/
[1] M. Doob, A surprising property of the least eigenvalue of a graph, Linear Algebra and Its Applications 46 (1982) 1-7, doi: 10.1016/0024-3795(82)90021-0.
[2] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).
[3] P.W.H. Lemmens and J.J. Seidel, Equiangular lines, Journal of Algebra 24 (1973) 494-512, doi: 10.1016/0021-8693(73)90123-3.
[4] L. Lovász, Combinatorial Problems and Exercises (North-Holland Publishing Company, Amsterdam, 1979).
[5] A.J. Schwenk, Computing the characteristic polynomial of a graph, in: Graphs and Combinatorics, eds. R.A. Bari and F. Harary, Springer-Verlag, Lecture Notes in Math. 406 (1974) 153-172.
[6] N.M. Singhi and G.R. Vijayakumar, Signed graphs with least eigenvalue -2, European J. Combin. 13 (1992) 219-220, doi: 10.1016/0195-6698(92)90027-W.
[7] J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, eds. R. Guy, H. Hanani, N. Sauer and J. Schönheim, Gordon and Breach, New York (1970), 403-406.
[8] D.B. West, Introduction to Graph Theory, Second edition (Printice Hall, New Jersey, USA, 2001).