Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_3_a10, author = {Imany-Nabiyyi, Ramin}, title = {The sizes of components in random circle graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {511--533}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a10/} }
Imany-Nabiyyi, Ramin. The sizes of components in random circle graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 511-533. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a10/
[1] L. Fatto and A.G. Konheim, The random division of an interval and the random covering of a circle, SIAM Review 4 (1962) 211-222, doi: 10.1137/1004058.
[2] E. Godehardt and J. Jaworski, On the connectivity of a random interval graphs, Random Structures and Algorithms 9 (1996) 137-161, doi: 10.1002/(SICI)1098-2418(199608/09)9:1/2137::AID-RSA9>3.0.CO;2-Y
[3] L. Holst and J. Husler, On the random coverage of the circle, J. Appl. Prob. 21 (1984) 558-566, doi: 10.2307/3213617.
[4] T. Huillet, Random covering of the circle: the size of the connected components, Adv. in Appl. Probab. 35 (2003) 563-582, doi: 10.1239/aap/1059486818.
[5] H. Maehara, On the intersection graph of random arcs on a circle, Random Graphs' 87 (1990) 159-173.
[6] M. Penrose, Random Geometric Graphs (Oxford Studies in Probability, 2003), doi: 10.1093/acprof:oso/9780198506263.001.0001.
[7] A.F. Siegel, Random arcs on the circle, J. Appl. Prob. 15 (1978) 774-789, doi: 10.2307/3213433.
[8] H. Solomon, Geometric Probability (Society for Industrial and Applied Mathematics, Philadelphia, 1976).
[9] F.W. Steutel, Random division of an interval, Statistica Neerlandica 21 (1967) 231-244, doi: 10.1111/j.1467-9574.1967.tb00561.x.
[10] W.L. Stevens, Solution to a geometrical problem in probability, Ann. Eugenics 9 (1939) 315-320, doi: 10.1111/j.1469-1809.1939.tb02216.x.