On critical and cocritical radius edge-invariant graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 393-418.

Voir la notice de l'article provenant de la source Library of Science

The concepts of critical and cocritical radius edge-invariant graphs are introduced. We prove that every graph can be embedded as an induced subgraph of a critical or cocritical radius-edge-invariant graph. We show that every cocritical radius-edge-invariant graph of radius r ≥ 15 must have at least 3r+2 vertices.
Keywords: extremal graphs, radius of graph
@article{DMGT_2008_28_3_a1,
     author = {Vacek, Ondrej},
     title = {On critical and cocritical radius edge-invariant graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {393--418},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a1/}
}
TY  - JOUR
AU  - Vacek, Ondrej
TI  - On critical and cocritical radius edge-invariant graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 393
EP  - 418
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a1/
LA  - en
ID  - DMGT_2008_28_3_a1
ER  - 
%0 Journal Article
%A Vacek, Ondrej
%T On critical and cocritical radius edge-invariant graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 393-418
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a1/
%G en
%F DMGT_2008_28_3_a1
Vacek, Ondrej. On critical and cocritical radius edge-invariant graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 393-418. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a1/

[1] V. Bálint and O. Vacek, Radius-invariant graphs, Math. Bohem. 129 (2004) 361-377.

[2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, 1990).

[3] R.D. Dutton, S.R. Medidi and R.C. Brigham, Changing and unchanging of the radius of graph, Linear Algebra Appl. 217 (1995) 67-82, doi: 10.1016/0024-3795(94)00153-5.

[4] F. Gliviak, On radially extremal graphs and digraphs, a survey, Math. Bohem. 125 (2000) 215-225.

[5] S.M. Lee, Design of diameter e-invariant networks, Congr. Numer. 65 (1988) 89-102.

[6] S.M. Lee and A.Y. Wang, On critical and cocritical diameter edge-invariant graphs, Graph Theory, Combinatorics, and Applications 2 (1991) 753-763.

[7] O. Vacek, Diameter-invariant graphs, Math. Bohem. 130 (2005) 355-370.

[8] V.G. Vizing, On the number of edges in graph with given radius, Dokl. Akad. Nauk 173 (1967) 1245-1246 (in Russian).

[9] H.B. Walikar, F. Buckley and K.M. Itagi, Radius-edge-invariant and diameter-edge-invariant graphs, Discrete Math. 272 (2003) 119-126, doi: 10.1016/S0012-365X(03)00189-4.