On locating and differentiating-total domination in trees
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 383-392.

Voir la notice de l'article provenant de la source Library of Science

A total dominating set of a graph G = (V,E) with no isolated vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in S. A total dominating set S of a graph G is a locating-total dominating set if for every pair of distinct vertices u and v in V-S, N(u)∩S ≠ N(v)∩S, and S is a differentiating-total dominating set if for every pair of distinct vertices u and v in V, N[u]∩S ≠ N[v] ∩S. Let γₜ^L(G) and γₜ^D(G) be the minimum cardinality of a locating-total dominating set and a differentiating-total dominating set of G, respectively. We show that for a nontrivial tree T of order n, with l leaves and s support vertices, γₜ^L(T) ≥ max2(n+l-s+1)/5,(n+2-s)/2, and for a tree of order n ≥ 3, γₜ^D(T) ≥ 3(n+l-s+1)/7, improving the lower bounds of Haynes, Henning and Howard. Moreover we characterize the trees satisfying γₜ^L(T) = 2(n+l- s+1)/5 or γₜ^D(T) = 3(n+l-s+1)/7.
Keywords: locating-total domination, differentiating-total domination, trees
@article{DMGT_2008_28_3_a0,
     author = {Chellali, Mustapha},
     title = {On locating and differentiating-total domination in trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {383--392},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a0/}
}
TY  - JOUR
AU  - Chellali, Mustapha
TI  - On locating and differentiating-total domination in trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 383
EP  - 392
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a0/
LA  - en
ID  - DMGT_2008_28_3_a0
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%T On locating and differentiating-total domination in trees
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 383-392
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a0/
%G en
%F DMGT_2008_28_3_a0
Chellali, Mustapha. On locating and differentiating-total domination in trees. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 3, pp. 383-392. http://geodesic.mathdoc.fr/item/DMGT_2008_28_3_a0/

[1] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australasian J. Combin. 39 (2007) 219-232.

[2] M. Chellali and T.W. Haynes, A note on the total domination number of a tree, J. Combin. Math. Combin. Comput. 58 (2006) 189-193.

[3] J. Gimbel, B. van Gorden, M. Nicolescu, C. Umstead and N. Vaiana, Location with dominating sets, Congr. Numer. 151 (2001) 129-144.

[4] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293-1300, doi: 10.1016/j.dam.2006.01.002.