Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_2_a9, author = {Li, Hong-Hai and Li, Jiong-Sheng}, title = {An upper bound on the {Laplacian} spectral radius of the signed graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {345--359}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a9/} }
TY - JOUR AU - Li, Hong-Hai AU - Li, Jiong-Sheng TI - An upper bound on the Laplacian spectral radius of the signed graphs JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 345 EP - 359 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a9/ LA - en ID - DMGT_2008_28_2_a9 ER -
Li, Hong-Hai; Li, Jiong-Sheng. An upper bound on the Laplacian spectral radius of the signed graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 345-359. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a9/
[1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623.
[2] F. Chung, Spectral Graph Theory (CMBS Lecture Notes. AMS Publication, 1997).
[3] D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs (Academic Press, New York, 1980).
[4] J.M. Guo, A new upper bound for the Laplacian spectral radius of graphs, Linear Algebra Appl. 400 (2005) 61-66, doi: 10.1016/j.laa.2004.10.022.
[5] F. Harary, On the notion of balanced in a signed graph, Michigan Math. J. 2 (1953) 143-146, doi: 10.1307/mmj/1028989917.
[6] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, 1985).
[7] Y.P. Hou, J.S. Li and Y.L. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611.
[8] L.L. Li, A simplified Brauer's theorem on matrix eigenvalues, Appl. Math. J. Chinese Univ. (B) 14 (1999) 259-264, doi: 10.1007/s11766-999-0034-x.
[9] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3.
[10] T.F. Wang, Several sharp upper bounds for the largest Laplacian eigenvalues of a graph, to appear.
[11] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47-74, doi: 10.1016/0166-218X(82)90033-6.
[12] X.D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl. 376 (2004) 207-213, doi: 10.1016/S0024-3795(03)00644-X.
[13] X.D. Zhang and J.S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9.