An upper bound on the Laplacian spectral radius of the signed graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 345-359.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we established a connection between the Laplacian eigenvalues of a signed graph and those of a mixed graph, gave a new upper bound for the largest Laplacian eigenvalue of a signed graph and characterized the extremal graph whose largest Laplacian eigenvalue achieved the upper bound. In addition, an example showed that the upper bound is the best in known upper bounds for some cases.
Keywords: Laplacian matrix, signed graph, mixed graph, largest Laplacian eigenvalue, upper bound
@article{DMGT_2008_28_2_a9,
     author = {Li, Hong-Hai and Li, Jiong-Sheng},
     title = {An upper bound on the {Laplacian} spectral radius of the signed graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {345--359},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a9/}
}
TY  - JOUR
AU  - Li, Hong-Hai
AU  - Li, Jiong-Sheng
TI  - An upper bound on the Laplacian spectral radius of the signed graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 345
EP  - 359
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a9/
LA  - en
ID  - DMGT_2008_28_2_a9
ER  - 
%0 Journal Article
%A Li, Hong-Hai
%A Li, Jiong-Sheng
%T An upper bound on the Laplacian spectral radius of the signed graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 345-359
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a9/
%G en
%F DMGT_2008_28_2_a9
Li, Hong-Hai; Li, Jiong-Sheng. An upper bound on the Laplacian spectral radius of the signed graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 345-359. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a9/

[1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623.

[2] F. Chung, Spectral Graph Theory (CMBS Lecture Notes. AMS Publication, 1997).

[3] D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs (Academic Press, New York, 1980).

[4] J.M. Guo, A new upper bound for the Laplacian spectral radius of graphs, Linear Algebra Appl. 400 (2005) 61-66, doi: 10.1016/j.laa.2004.10.022.

[5] F. Harary, On the notion of balanced in a signed graph, Michigan Math. J. 2 (1953) 143-146, doi: 10.1307/mmj/1028989917.

[6] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, 1985).

[7] Y.P. Hou, J.S. Li and Y.L. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611.

[8] L.L. Li, A simplified Brauer's theorem on matrix eigenvalues, Appl. Math. J. Chinese Univ. (B) 14 (1999) 259-264, doi: 10.1007/s11766-999-0034-x.

[9] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3.

[10] T.F. Wang, Several sharp upper bounds for the largest Laplacian eigenvalues of a graph, to appear.

[11] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47-74, doi: 10.1016/0166-218X(82)90033-6.

[12] X.D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl. 376 (2004) 207-213, doi: 10.1016/S0024-3795(03)00644-X.

[13] X.D. Zhang and J.S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9.