On acyclic colorings of direct products
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 323-333.

Voir la notice de l'article provenant de la source Library of Science

A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T₁ and T₂ equals minΔ(T₁) + 1, Δ(T₂) + 1. We also prove that the acyclic chromatic number of direct product of two complete graphs Kₘ and Kₙ is mn-m-2, where m ≥ n ≥ 4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised.
Keywords: coloring, acyclic coloring, distance-two coloring, direct product
@article{DMGT_2008_28_2_a7,
     author = {\v{S}pacapan, Simon and Horvat, Aleksandra},
     title = {On acyclic colorings of direct products},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {323--333},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a7/}
}
TY  - JOUR
AU  - Špacapan, Simon
AU  - Horvat, Aleksandra
TI  - On acyclic colorings of direct products
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 323
EP  - 333
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a7/
LA  - en
ID  - DMGT_2008_28_2_a7
ER  - 
%0 Journal Article
%A Špacapan, Simon
%A Horvat, Aleksandra
%T On acyclic colorings of direct products
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 323-333
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a7/
%G en
%F DMGT_2008_28_2_a7
Špacapan, Simon; Horvat, Aleksandra. On acyclic colorings of direct products. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 323-333. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a7/

[1] N. Alon, C. McDiarmid and B. Reed, Acyclic colouring of graphs, Random Structures and Algorithms 2 (1991) 277-288, doi: 10.1002/rsa.3240020303.

[2] N. Alon, B. Mohar and D. P. Sanders, On acyclic colorings of graphs on surfaces, Israel J. Math. 94 (1996) 273-283, doi: 10.1007/BF02762708.

[3] O.V. Borodin, On decomposition of graphs into degenerate subgraphs, Diskretny Analys, Novosibirsk 28 (1976) 3-12 (in Russian).

[4] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3.

[5] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-412, doi: 10.1007/BF02764716.

[6] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495, doi: 10.1002/jgt.3190090409.

[7] M. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121-126, doi: 10.1007/BF02579374.

[8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley Sons, New York, 2000).

[9] R.E. Jamison and G.L. Matthews, Acyclic colorings of products of cycles, manuscript 2005.

[10] R.E. Jamison, G.L. Matthews and J. Villalpando, Acyclic colorings of products of trees, Inform. Process. Lett. 99 (2006) 7-12, doi: 10.1016/j.ipl.2005.11.023.

[11] B. Mohar, Acyclic colorings of locally planar graphs, European J. Combin. 26 (2005) 491-503, doi: 10.1016/j.ejc.2003.12.016.

[12] C. Tardif, The fractional chromatic number of the categorical product of graphs, Combinatorica 25 (2005) 625-632, doi: 10.1007/s00493-005-0038-y.

[13] X. Zhu, A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998) 1-24.