Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 285-306

Voir la notice de l'article provenant de la source Library of Science

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions:
Keywords: kernel, kernel by monochromatic paths, bipartite tournament
@article{DMGT_2008_28_2_a5,
     author = {Galeana-Sanchez, Hortensia and Rojas-Monroy, Roc{\'\i}o},
     title = {Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {285--306},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/}
}
TY  - JOUR
AU  - Galeana-Sanchez, Hortensia
AU  - Rojas-Monroy, Rocío
TI  - Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 285
EP  - 306
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/
LA  - en
ID  - DMGT_2008_28_2_a5
ER  - 
%0 Journal Article
%A Galeana-Sanchez, Hortensia
%A Rojas-Monroy, Rocío
%T Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 285-306
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/
%G en
%F DMGT_2008_28_2_a5
Galeana-Sanchez, Hortensia; Rojas-Monroy, Rocío. Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 285-306. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/