Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 285-306
Voir la notice de l'article provenant de la source Library of Science
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A directed cycle is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions:
Keywords:
kernel, kernel by monochromatic paths, bipartite tournament
@article{DMGT_2008_28_2_a5,
author = {Galeana-Sanchez, Hortensia and Rojas-Monroy, Roc{\'\i}o},
title = {Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {285--306},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/}
}
TY - JOUR AU - Galeana-Sanchez, Hortensia AU - Rojas-Monroy, Rocío TI - Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 285 EP - 306 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/ LA - en ID - DMGT_2008_28_2_a5 ER -
%0 Journal Article %A Galeana-Sanchez, Hortensia %A Rojas-Monroy, Rocío %T Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments %J Discussiones Mathematicae. Graph Theory %D 2008 %P 285-306 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/ %G en %F DMGT_2008_28_2_a5
Galeana-Sanchez, Hortensia; Rojas-Monroy, Rocío. Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 285-306. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a5/