Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2008_28_2_a4, author = {Klostermeyer, William and Mynhardt, Christina}, title = {Secure domination and secure total domination in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {267--284}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a4/} }
TY - JOUR AU - Klostermeyer, William AU - Mynhardt, Christina TI - Secure domination and secure total domination in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 267 EP - 284 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a4/ LA - en ID - DMGT_2008_28_2_a4 ER -
Klostermeyer, William; Mynhardt, Christina. Secure domination and secure total domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 267-284. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a4/
[1] M. Anderson, C. Barrientos, R. Brigham, J. Carrington, R. Vitray and J. Yellen, Maximum demand graphs for eternal security, J. Combin. Math. Combin. Comput. 61 (2007) 111-128.
[2] S. Benecke, Higher Order Domination of Graphs (Master's Thesis, University of Stellenbosch, 2004).
[3] S. Benecke, E.J. Cockayne and C.M. Mynhardt, Secure total domination in graphs, Utilitas Math. 74 (2007) 247-259.
[4] S. Benecke, P.J.P. Grobler and J.H. van Vuuren, Protection of complete multipartite graphs, Utilitas Math. 71 (2006) 161-168.
[5] A.P. Burger, E.J. Cockayne, W.R. Gründlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach, Finite order domination in graphs, J. Combin. Math. Combin. Comput. 49 (2004 159-175.
[6] A.P. Burger, E.J. Cockayne, W.R. Gründlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach, Infinite order domination in graphs, J. Combin. Math. Combin. Comput. 50 (2004) 179-194.
[7] E.J. Cockayne, Irredundance, secure domination and maximum degree in trees, Discrete Math. 307 (2007) 12-17, doi: 10.1016/j.disc.2006.05.037.
[8] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-12, doi: 10.1016/j.disc.2003.06.004.
[9] E.J. Cockayne, O. Favaron and C.M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003) 87-100.
[10] E.J. Cockayne, O. Favaron and C.M. Mynhardt, Total domination in $K_r$-covered graphs, Ars Combin. 71 (2004) 289-303.
[11] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Utilitas Math. 67 (2005) 19-32.
[12] O. Favaron, H. Karami and S.M. Sheikholeslami, Total domination in K₅- and K₆-covered graphs, submitted.
[13] W. Goddard, S.M. Hedetniemi and S.T. Hedetniemi, Eternal security in graphs, J. Combin. Math. Combin. Comput. 52 (2005) 169-180.
[14] J. Goldwasser and W.F. Klostermeyer, Tight bounds for eternal dominating sets in graphs, Discrete Math. 308 (2008) 2589-2593, doi: 10.1016/j.disc.2007.06.005.
[15] P.J.P. Grobler and C.M. Mynhardt, Secure domination critical graphs, Discrete Math., to appear.
[16] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[17] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 225-234, doi: 10.7151/dmgt.1178.
[18] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115, doi: 10.1016/S0012-365X(03)00040-2.
[19] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire - A new strategy, Discrete Math. 266 (2003) 239-251, doi: 10.1016/S0012-365X(02)00811-7.
[20] W.F. Klostermeyer and G. MacGillivray, Eternal security in graphs of fixed independence number, J. Combin. Math. Combin. Comput. 63 (2007) 97-101.
[21] W.F. Klostermeyer and G. MacGillivray, Eternal dominating sets in graphs, J. Combin. Math. Combin. Comput. (2007), to appear.
[22] C.M. Mynhardt, H.C. Swart and E. Ungerer, Excellent trees and secure domination, Utilitas Math. 67 (2005) 255-267.
[23] I. Stewart, Defend the Roman Empire! Scientific American, December 1999, 136-138, doi: 10.1038/scientificamerican1299-136.