Secure domination and secure total domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 267-284

Voir la notice de l'article provenant de la source Library of Science

A secure (total) dominating set of a graph G = (V,E) is a (total) dominating set X ⊆ V with the property that for each u ∈ V-X, there exists x ∈ X adjacent to u such that (X-x) ∪ u is (total) dominating. The smallest cardinality of a secure (total) dominating set is the secure (total) domination number γ_s(G)(γ_st(G)). We characterize graphs with equal total and secure total domination numbers. We show that if G has minimum degree at least two, then γ_st(G) ≤ γ_s(G). We also show that γ_st(G) is at most twice the clique covering number of G, and less than three times the independence number. With the exception of the independence number bound, these bounds are sharp.
Keywords: secure domination, total domination, secure total domination, clique covering
@article{DMGT_2008_28_2_a4,
     author = {Klostermeyer, William and Mynhardt, Christina},
     title = {Secure domination and secure total domination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {267--284},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a4/}
}
TY  - JOUR
AU  - Klostermeyer, William
AU  - Mynhardt, Christina
TI  - Secure domination and secure total domination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 267
EP  - 284
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a4/
LA  - en
ID  - DMGT_2008_28_2_a4
ER  - 
%0 Journal Article
%A Klostermeyer, William
%A Mynhardt, Christina
%T Secure domination and secure total domination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 267-284
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a4/
%G en
%F DMGT_2008_28_2_a4
Klostermeyer, William; Mynhardt, Christina. Secure domination and secure total domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 267-284. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a4/