Ordered and linked chordal graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 367-373

Voir la notice de l'article provenant de la source Library of Science

A graph G is called k-ordered if for every sequence of k distinct vertices there is a cycle traversing these vertices in the given order. In the present paper we consider two novel generalizations of this concept, k-vertex-edge-ordered and strongly k-vertex-edge-ordered. We prove the following results for a chordal graph G:
Keywords: paths and cycles, connectivity, chordal graphs
@article{DMGT_2008_28_2_a11,
     author = {B\"ohme, Thomas and Gerlach, Tobias and Stiebitz, Michael},
     title = {Ordered and linked chordal graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {367--373},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/}
}
TY  - JOUR
AU  - Böhme, Thomas
AU  - Gerlach, Tobias
AU  - Stiebitz, Michael
TI  - Ordered and linked chordal graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 367
EP  - 373
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/
LA  - en
ID  - DMGT_2008_28_2_a11
ER  - 
%0 Journal Article
%A Böhme, Thomas
%A Gerlach, Tobias
%A Stiebitz, Michael
%T Ordered and linked chordal graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 367-373
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/
%G en
%F DMGT_2008_28_2_a11
Böhme, Thomas; Gerlach, Tobias; Stiebitz, Michael. Ordered and linked chordal graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 367-373. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/