Ordered and linked chordal graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 367-373
Voir la notice de l'article provenant de la source Library of Science
A graph G is called k-ordered if for every sequence of k distinct vertices there is a cycle traversing these vertices in the given order. In the present paper we consider two novel generalizations of this concept, k-vertex-edge-ordered and strongly k-vertex-edge-ordered. We prove the following results for a chordal graph G:
Keywords:
paths and cycles, connectivity, chordal graphs
@article{DMGT_2008_28_2_a11,
author = {B\"ohme, Thomas and Gerlach, Tobias and Stiebitz, Michael},
title = {Ordered and linked chordal graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {367--373},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/}
}
TY - JOUR AU - Böhme, Thomas AU - Gerlach, Tobias AU - Stiebitz, Michael TI - Ordered and linked chordal graphs JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 367 EP - 373 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/ LA - en ID - DMGT_2008_28_2_a11 ER -
Böhme, Thomas; Gerlach, Tobias; Stiebitz, Michael. Ordered and linked chordal graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 367-373. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/