Ordered and linked chordal graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 367-373.

Voir la notice de l'article provenant de la source Library of Science

A graph G is called k-ordered if for every sequence of k distinct vertices there is a cycle traversing these vertices in the given order. In the present paper we consider two novel generalizations of this concept, k-vertex-edge-ordered and strongly k-vertex-edge-ordered. We prove the following results for a chordal graph G:
Keywords: paths and cycles, connectivity, chordal graphs
@article{DMGT_2008_28_2_a11,
     author = {B\"ohme, Thomas and Gerlach, Tobias and Stiebitz, Michael},
     title = {Ordered and linked chordal graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {367--373},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/}
}
TY  - JOUR
AU  - Böhme, Thomas
AU  - Gerlach, Tobias
AU  - Stiebitz, Michael
TI  - Ordered and linked chordal graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 367
EP  - 373
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/
LA  - en
ID  - DMGT_2008_28_2_a11
ER  - 
%0 Journal Article
%A Böhme, Thomas
%A Gerlach, Tobias
%A Stiebitz, Michael
%T Ordered and linked chordal graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 367-373
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/
%G en
%F DMGT_2008_28_2_a11
Böhme, Thomas; Gerlach, Tobias; Stiebitz, Michael. Ordered and linked chordal graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 367-373. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a11/

[1] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica 16 (1996) 313-320, doi: 10.1007/BF01261316.

[2] R. Diestel, Graph Theory, Graduate Texts in Mathematics 173 (Springer, 2000).

[3] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.

[4] R.J. Faudree, Survey on results on k-ordered graphs, Discrete Math. 229 (2001) 73-87, doi: 10.1016/S0012-365X(00)00202-8.

[5] H.A. Jung, Eine veralgemeinerung des n-fachen zusammenhangs für graphen, Math. Ann. 187 (1970) 95-103, doi: 10.1007/BF01350174.

[6] D.G. Larman and P. Mani, On the existence of certain configurations within graphs and the 1-skeleton of polytopes, Proc. London Math. Soc. 20 (1970) 144-160, doi: 10.1112/plms/s3-20.1.144.

[7] L. Ng and M. Schultz, k-ordered Hamiltonian graphs, J. Graph Theory 24 (1997) 45-57, doi: 10.1002/(SICI)1097-0118(199701)24:145::AID-JGT6>3.0.CO;2-J

[8] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, to appear in European J. Comb.