@article{DMGT_2008_28_2_a0,
author = {Wang, Jianfeng and Huang, Qiongxiang and Ye, Chengfu and Liu, Ruying},
title = {The chromatic equivalence class of graph $\overline{B_{n-6,1,2}}$},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {189--218},
year = {2008},
volume = {28},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a0/}
}
TY - JOUR
AU - Wang, Jianfeng
AU - Huang, Qiongxiang
AU - Ye, Chengfu
AU - Liu, Ruying
TI - The chromatic equivalence class of graph $\overline{B_{n-6,1,2}}$
JO - Discussiones Mathematicae. Graph Theory
PY - 2008
SP - 189
EP - 218
VL - 28
IS - 2
UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a0/
LA - en
ID - DMGT_2008_28_2_a0
ER -
%0 Journal Article
%A Wang, Jianfeng
%A Huang, Qiongxiang
%A Ye, Chengfu
%A Liu, Ruying
%T The chromatic equivalence class of graph $\overline{B_{n-6,1,2}}$
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 189-218
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a0/
%G en
%F DMGT_2008_28_2_a0
Wang, Jianfeng; Huang, Qiongxiang; Ye, Chengfu; Liu, Ruying. The chromatic equivalence class of graph $\overline{B_{n-6,1,2}}$. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 2, pp. 189-218. http://geodesic.mathdoc.fr/item/DMGT_2008_28_2_a0/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
[2] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little and M.D. Hendy, Two invariants for adjointly equivalent graphs, Australasian J. Combin. 25 (2002) 133-143.
[3] F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Chromaticity of some families of dense graphs, Discrete Math. 258 (2002) 303-321, doi: 10.1016/S0012-365X(02)00355-2.
[4] Q.Y. Du, The graph parameter π (G) and the classification of graphs according to it, Acta Sci. Natur. Univ. Neimonggol 26 (1995) 258-262.
[5] B.F. Huo, Relations between three parameters A(G), R(G) and D₂(G) of graph G (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 2 (1998) 1-6.
[6] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs and Combin. 6 (1990) 259-285, doi: 10.1007/BF01787578.
[7] K.M. Koh and K.L. Teo, The search for chromatically unique graphs-II, Discrete Math. 172 (1997) 59-78, doi: 10.1016/S0012-365X(96)00269-5.
[8] R.Y. Liu, Several results on adjoint polynomials of graphs (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 1 (1992) 1-6.
[9] R.Y. Liu, On the irreducible graph (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 4 (1993) 29-33.
[10] R.Y. Liu and L.C. Zhao, A new method for proving uniqueness of graphs, Discrete Math. 171 (1997) 169-177, doi: 10.1016/S0012-365X(96)00078-7.
[11] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997) 85-92, doi: 10.1016/S0012-365X(96)00271-3.
[12] J.S. Mao, Adjoint uniqueness of two kinds of trees (in Chinese), The thesis for Master Degree (Qinghai Normal University, 2004).
[13] R.C. Read and W.T. Tutte, Chromatic Polynomials, in: L.W. Beineke, R.T. Wilson (Eds), Selected Topics in Graph Theory III (Academiv Press, New York, 1988) 15-42.
[14] S.Z. Ren, On the fourth coefficients of adjoint polynomials of some graphs (in Chinese), Pure and Applied Math. 19 (2003) 213-218.
[15] J.F. Wang, R.Y. Liu, C.F. Ye and Q.X. Huang, A complete solution to the chromatic equivalence class of graph $\overline{B_{n-7,1,3}}$, Discrete Math. 308 (2008) 3607-3623.
[16] C.F. Ye, The roots of adjoint polynomials of the graphs containing triangles, Chin. Quart. J. Math. 19 (2004) 280-285.
[17] H.X. Zhao, Chromaticity and Adjoint Polynomials of Graphs, The thesis for Doctor Degree (University of Twente, 2005). The Netherlands, Wöhrmann Print Service (available at http://purl.org/utwente/50795)