Weakly connected domination subdivision numbers
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 109-119.

Voir la notice de l'article provenant de la source Library of Science

A set D of vertices in a graph G = (V,E) is a weakly connected dominating set of G if D is dominating in G and the subgraph weakly induced by D is connected. The weakly connected domination number of G is the minimum cardinality of a weakly connected dominating set of G. The weakly connected domination subdivision number of a connected graph G is the minimum number of edges that must be subdivided (where each egde can be subdivided at most once) in order to increase the weakly connected domination number. We study the weakly connected domination subdivision numbers of some families of graphs.
Keywords: weakly connected domination number, weakly connected domination subdivision number
@article{DMGT_2008_28_1_a7,
     author = {Raczek, Joanna},
     title = {Weakly connected domination subdivision numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a7/}
}
TY  - JOUR
AU  - Raczek, Joanna
TI  - Weakly connected domination subdivision numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 109
EP  - 119
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a7/
LA  - en
ID  - DMGT_2008_28_1_a7
ER  - 
%0 Journal Article
%A Raczek, Joanna
%T Weakly connected domination subdivision numbers
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 109-119
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a7/
%G en
%F DMGT_2008_28_1_a7
Raczek, Joanna. Weakly connected domination subdivision numbers. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a7/

[1] G.S. Domke, J.H. Hattingh and L.R. Marcus, On weakly connected domination in graphs II, Discrete Math. 305 (2005) 112-122, doi: 10.1016/j.disc.2005.10.006.

[2] J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi and A.A. McRae, On weakly connected domination in graphs, Discrete Math. 167/168 (1997) 261-269, doi: 10.1016/S0012-365X(96)00233-6.

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).

[4] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2003) 457-467, doi: 10.7151/dmgt.1244.

[5] J.H. Hattingh, E. Jonck and L.R. Marcus, A note on the weakly connected subdivision number of a graph (2007), to appear.