Partitions of a graph into cycles containing a specified linear forest
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 97-107.

Voir la notice de l'article provenant de la source Library of Science

In this note, we consider the partition of a graph into cycles containing a specified linear forest. Minimum degree and degree sum conditions are given, which are best possible.
Keywords: partition of a graph, vertex-disjoint cycle, 2-factor, linear forest
@article{DMGT_2008_28_1_a6,
     author = {Matsubara, Ryota and Matsumura, Hajime},
     title = {Partitions of a graph into cycles containing a specified linear forest},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {97--107},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a6/}
}
TY  - JOUR
AU  - Matsubara, Ryota
AU  - Matsumura, Hajime
TI  - Partitions of a graph into cycles containing a specified linear forest
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 97
EP  - 107
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a6/
LA  - en
ID  - DMGT_2008_28_1_a6
ER  - 
%0 Journal Article
%A Matsubara, Ryota
%A Matsumura, Hajime
%T Partitions of a graph into cycles containing a specified linear forest
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 97-107
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a6/
%G en
%F DMGT_2008_28_1_a6
Matsubara, Ryota; Matsumura, Hajime. Partitions of a graph into cycles containing a specified linear forest. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 97-107. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a6/

[1] S. Brandt, G. Chen, R.J. Faudree, R.J. Gould and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2165::AID-JGT4>3.0.CO;2-O

[2] G. Chartrand and L. Lesniak, Graphs Digraphs, 4th edition (Chapman Hall, London, 2004).

[3] Y. Egawa, H. Enomoto, R.J. Faudree, H. Li and I. Schiermeyer, Two factors each component of which contains a specified vertex, J. Graph Theory 43 (2003) 188-198, doi: 10.1002/jgt.10113.

[4] Y. Egawa, R.J. Faudree, E. Györi, Y. Ishigami, R.H. Schelp and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81-92, doi: 10.1007/s003730050005.

[5] Y. Egawa and R. Matsubara, Vertex-disjoint cycles containing specified vertices in a graph, AKCE Int. J. Graphs Comb. 3 (1) (2006) 65-92.

[6] H. Enomoto, Graph partition problems into cycles and paths, Discrete Math. 233 (2001) 93-101, doi: 10.1016/S0012-365X(00)00229-6.

[7] H. Enomoto and H. Matsumura, Cycle-partition of a graph with specified vertices and edges, to appear in Ars Combinatoria.

[8] Y. Ishigami and H. Wang, An extension of a theorem on cycles containing specified independent edges, Discrete Math. 245 (2002) 127-137, doi: 10.1016/S0012-365X(01)00137-6.

[9] A. Kaneko and K. Yoshimoto, On a 2-factor with a specified edge in a graph satisfying the Ore condition, Discrete Math. 257 (2002) 445-461, doi: 10.1016/S0012-365X(02)00506-X.

[10] R. Matsubara and T. Sakai, Cycles and degenerate cycles through specified vertices, Far East J. Appl. Math. 20 (2005) 201-208.

[11] T. Sakai, Degree-sum conditions for graphs to have 2-factors with cycles through specified vertices, SUT J. Math. 38 (2002) 211-222.