An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 91-96
Cet article a éte moissonné depuis la source Library of Science
We derive an upper bound on the number of vertices in graphs of diameter 3 and given degree arising from Abelian lifts of dipoles with loops and multiple edges.
Keywords:
degree and diameter of a graph, dipole
@article{DMGT_2008_28_1_a5,
author = {Vetr{\'\i}k, Tom\'as},
title = {An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {91--96},
year = {2008},
volume = {28},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a5/}
}
TY - JOUR AU - Vetrík, Tomás TI - An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 91 EP - 96 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a5/ LA - en ID - DMGT_2008_28_1_a5 ER -
Vetrík, Tomás. An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a5/
[1] B.D. McKay, M. Miller and J. Sirán, A note on large graphs of diameter two and given maximum degree, J. Combin. Theory (B) 74 (1998) 110-118, doi: 10.1006/jctb.1998.1828.
[2] J. Siagiová, A Moore-like bound for graphs of diameter 2 and given degree, obtained as Abelian lifts of dipoles, Acta Math. Univ. Comenianae 71 (2002) 157-161.
[3] J. Siagiová, A note on the McKay-Miller-Sirán graphs, J. Combin. Theory (B) 81 (2001) 205-208, doi: 10.1006/jctb.2000.2006.