An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 91-96.

Voir la notice de l'article provenant de la source Library of Science

We derive an upper bound on the number of vertices in graphs of diameter 3 and given degree arising from Abelian lifts of dipoles with loops and multiple edges.
Keywords: degree and diameter of a graph, dipole
@article{DMGT_2008_28_1_a5,
     author = {Vetr{\'\i}k, Tom\'as},
     title = {An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a5/}
}
TY  - JOUR
AU  - Vetrík, Tomás
TI  - An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 91
EP  - 96
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a5/
LA  - en
ID  - DMGT_2008_28_1_a5
ER  - 
%0 Journal Article
%A Vetrík, Tomás
%T An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 91-96
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a5/
%G en
%F DMGT_2008_28_1_a5
Vetrík, Tomás. An upper bound for graphs of diameter 3 and given degree obtained as abelian lifts of dipoles. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a5/

[1] B.D. McKay, M. Miller and J. Sirán, A note on large graphs of diameter two and given maximum degree, J. Combin. Theory (B) 74 (1998) 110-118, doi: 10.1006/jctb.1998.1828.

[2] J. Siagiová, A Moore-like bound for graphs of diameter 2 and given degree, obtained as Abelian lifts of dipoles, Acta Math. Univ. Comenianae 71 (2002) 157-161.

[3] J. Siagiová, A note on the McKay-Miller-Sirán graphs, J. Combin. Theory (B) 81 (2001) 205-208, doi: 10.1006/jctb.2000.2006.