Trees with equal total domination and total restrained domination numbers
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 59-66.

Voir la notice de l'article provenant de la source Library of Science

For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and 〈V(G)-S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained domination numbers are the same.
Keywords: total domination number, total restrained domination number, tree
@article{DMGT_2008_28_1_a3,
     author = {Chen, Xue-Gang and Shiu, Wai and Chen, Hong-Yu},
     title = {Trees with equal total domination and total restrained domination numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/}
}
TY  - JOUR
AU  - Chen, Xue-Gang
AU  - Shiu, Wai
AU  - Chen, Hong-Yu
TI  - Trees with equal total domination and total restrained domination numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 59
EP  - 66
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/
LA  - en
ID  - DMGT_2008_28_1_a3
ER  - 
%0 Journal Article
%A Chen, Xue-Gang
%A Shiu, Wai
%A Chen, Hong-Yu
%T Trees with equal total domination and total restrained domination numbers
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 59-66
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/
%G en
%F DMGT_2008_28_1_a3
Chen, Xue-Gang; Shiu, Wai; Chen, Hong-Yu. Trees with equal total domination and total restrained domination numbers. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/

[1] S. Arumugam and J. Paulraj Joseph, On graphs with equal domination and connected domination numbers, Discrete Math. 206 (1999) 45-49, doi: 10.1016/S0012-365X(98)00390-2.

[2] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Marcus, Restrained domination in graphs, Discrete Math. 203 (1999) 61-69, doi: 10.1016/S0012-365X(99)00016-3.

[3] F. Harary and M. Livingston, Characterization of tree with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150.

[4] D. Ma, X. Chen and L. Sun, On total restrained domination in graphs, Czechoslovak Math. J. 55 (2005) 165-173, doi: 10.1007/s10587-005-0012-2.

[5] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi and L.R. Markus, Restrained domination in trees, Discrete Math. 211 (2000) 1-9, doi: 10.1016/S0012-365X(99)00036-9.

[6] E.J. Cockayne, C.M. Mynhardt and B. Yu, Total dominating functions in trees: minimality and convexity, J. Graph Theory 19 (1995) 83-92, doi: 10.1002/jgt.3190190109.