Trees with equal total domination and total restrained domination numbers
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 59-66

Voir la notice de l'article provenant de la source Library of Science

For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and 〈V(G)-S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained domination numbers are the same.
Keywords: total domination number, total restrained domination number, tree
@article{DMGT_2008_28_1_a3,
     author = {Chen, Xue-Gang and Shiu, Wai and Chen, Hong-Yu},
     title = {Trees with equal total domination and total restrained domination numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/}
}
TY  - JOUR
AU  - Chen, Xue-Gang
AU  - Shiu, Wai
AU  - Chen, Hong-Yu
TI  - Trees with equal total domination and total restrained domination numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 59
EP  - 66
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/
LA  - en
ID  - DMGT_2008_28_1_a3
ER  - 
%0 Journal Article
%A Chen, Xue-Gang
%A Shiu, Wai
%A Chen, Hong-Yu
%T Trees with equal total domination and total restrained domination numbers
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 59-66
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/
%G en
%F DMGT_2008_28_1_a3
Chen, Xue-Gang; Shiu, Wai; Chen, Hong-Yu. Trees with equal total domination and total restrained domination numbers. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a3/