Recognizable colorings of graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 35-57.

Voir la notice de l'article provenant de la source Library of Science

Let G be a connected graph and let c:V(G) → 1,2,...,k be a coloring of the vertices of G for some positive integer k (where adjacent vertices may be colored the same). The color code of a vertex v of G (with respect to c) is the ordered (k+1)-tuple code(v) = (a₀,a₁,...,aₖ) where a₀ is the color assigned to v and for 1 ≤ i ≤ k, a_i is the number of vertices adjacent to v that are colored i. The coloring c is called recognizable if distinct vertices have distinct color codes and the recognition number rn(G) of G is the minimum positive integer k for which G has a recognizable k-coloring. Recognition numbers of complete multipartite graphs are determined and characterizations of connected graphs of order n having recognition numbers n or n-1 are established. It is shown that for each pair k,n of integers with 2 ≤ k ≤ n, there exists a connected graph of order n having recognition number k. Recognition numbers of cycles, paths, and trees are investigated.
Keywords: recognizable coloring, recognition number
@article{DMGT_2008_28_1_a2,
     author = {Chartrand, Gary and Lesniak, Linda and VanderJagt, Donald and Zhang, Ping},
     title = {Recognizable colorings of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {35--57},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a2/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Lesniak, Linda
AU  - VanderJagt, Donald
AU  - Zhang, Ping
TI  - Recognizable colorings of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 35
EP  - 57
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a2/
LA  - en
ID  - DMGT_2008_28_1_a2
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Lesniak, Linda
%A VanderJagt, Donald
%A Zhang, Ping
%T Recognizable colorings of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 35-57
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a2/
%G en
%F DMGT_2008_28_1_a2
Chartrand, Gary; Lesniak, Linda; VanderJagt, Donald; Zhang, Ping. Recognizable colorings of graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 35-57. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a2/

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244, doi: 10.1016/j.jctb.2005.01.001.

[2] M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, R. Bodendiek and R. Henn, eds. (Physica, Heidelberg, 1990) 29-36.

[3] M. Aigner, E. Triesch and Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics' 90 (Elsevier Science Pub., New York, 1992) 1-9.

[4] P.N. Balister, E. Gyori, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.

[5] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140

[6] A.C. Burris, The irregular coloring number of a tree, Discrete Math. 141 (1995) 279-283, doi: 10.1016/0012-365X(93)E0225-S.

[7] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32.

[8] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congress. Numer. 64 (1988) 197-210.

[9] G. Chartrand and L. Lesniak, Graphs Digraphs: Fourth Edition (Chapman Hall/CRC, Boca Raton, FL, 2005).

[10] H. Escuadro, F. Okamoto and P. Zhang, A three-color problem in graph theory, Bull. Inst. Combin. Appl., to appear.

[11] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications (Wiley, New York, 1985) 147-162.

[12] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157, doi: 10.1016/j.jctb.2003.12.001.