A cancellation property for the direct product of graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 179-184.

Voir la notice de l'article provenant de la source Library of Science

Given graphs A, B and C for which A×C ≅ B×C, it is not generally true that A ≅ B. However, it is known that A×C ≅ B×C implies A ≅ B provided that C is non-bipartite, or that there are homomorphisms from A and B to C. This note proves an additional cancellation property. We show that if B and C are bipartite, then A×C ≅ B×C implies A ≅ B if and only if no component of B admits an involution that interchanges its partite sets.
Keywords: graph products, graph direct product, cancellation
@article{DMGT_2008_28_1_a12,
     author = {Hammack, Richard},
     title = {A cancellation property for the direct product of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {179--184},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a12/}
}
TY  - JOUR
AU  - Hammack, Richard
TI  - A cancellation property for the direct product of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 179
EP  - 184
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a12/
LA  - en
ID  - DMGT_2008_28_1_a12
ER  - 
%0 Journal Article
%A Hammack, Richard
%T A cancellation property for the direct product of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 179-184
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a12/
%G en
%F DMGT_2008_28_1_a12
Hammack, Richard. A cancellation property for the direct product of graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 179-184. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a12/

[1] R. Hammack, A quasi cancellation property for the direct product, Proceedings of the Sixth Slovenian International Conference on Graph Theory, under review.

[2] P. Hell and J. Nesetril, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics (Oxford U. Press, 2004), doi: 10.1093/acprof:oso/9780198528173.001.0001.

[3] W. Imrich and S. Klavžar, Product Graphs; Structure and Recognition (Wiley Interscience Series in Discrete Mathematics and Optimization, 2000).

[4] L. Lovász, On the cancellation law among finite relational structures, Period. Math. Hungar. 1 (1971) 59-101.