Radio k-labelings for Cartesian products of graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 165-178.

Voir la notice de l'article provenant de la source Library of Science

Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that
Keywords: graph theory, radio channel assignment, radio k-labeling, Cartesian product, radio number, antipodal number
@article{DMGT_2008_28_1_a11,
     author = {Kchikech, Mustapha and Khennoufa, Riadh and Togni, Olivier},
     title = {Radio k-labelings for {Cartesian} products of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {165--178},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a11/}
}
TY  - JOUR
AU  - Kchikech, Mustapha
AU  - Khennoufa, Riadh
AU  - Togni, Olivier
TI  - Radio k-labelings for Cartesian products of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2008
SP  - 165
EP  - 178
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a11/
LA  - en
ID  - DMGT_2008_28_1_a11
ER  - 
%0 Journal Article
%A Kchikech, Mustapha
%A Khennoufa, Riadh
%A Togni, Olivier
%T Radio k-labelings for Cartesian products of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2008
%P 165-178
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a11/
%G en
%F DMGT_2008_28_1_a11
Kchikech, Mustapha; Khennoufa, Riadh; Togni, Olivier. Radio k-labelings for Cartesian products of graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 165-178. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a11/

[1] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of cycles, Congr. Numer. 144 (2000) 129-141.

[2] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127 (2002) 57-69.

[3] G. Chartrand, L. Nebeský and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory 24 (2004) 5-21, doi: 10.7151/dmgt.1209.

[4] G. Fertin, E. Godard and A. Raspaud, Acyclic and k-distance coloring of the grid, Inform. Process. Lett. 87 (2003) 51-58, doi: 10.1016/S0020-0190(03)00232-1.

[5] W. Imrich and S. Klavžar, Product graphs, Structure and recognition, With a foreword by Peter Winkler, Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley-Interscience, New York, 2000).

[6] M. Kchikech, R. Khennoufa and O. Togni, Linear and cyclic radio k-labelings of trees, Discuss. Math. Graph Theory 27 (2007) 105-123, doi: 10.7151/dmgt.1348.

[7] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohemica 130 (2005) 277-282.

[8] R. Khennoufa and O. Togni, The Radio Antipodal Number of the Hypercube, submitted, 2007.

[9] D. Král, L.-D. Tong and X. Zhu, Upper Hamiltonian numbers and Hamiltonian spectra of graphs, Australasian J. Combin. 35 (2006) 329-340.

[10] D. Liu, Radio Number for Trees, manuscript, 2006.

[11] D. Liu and M. Xie, Radio Number for Square Paths, Discrete Math., to appear.

[12] D. Liu and X. Zhu, Multi-level distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2005) 610-621, doi: 10.1137/S0895480102417768.