Maximal k-independent sets in graphs
Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 151-163
Voir la notice de l'article provenant de la source Library of Science
A subset of vertices of a graph G is k-independent if it induces in G a subgraph of maximum degree less than k. The minimum and maximum cardinalities of a maximal k-independent set are respectively denoted iₖ(G) and βₖ(G). We give some relations between βₖ(G) and β_j(G) and between iₖ(G) and i_j(G) for j ≠ k. We study two families of extremal graphs for the inequality i₂(G) ≤ i(G) + β(G). Finally we give an upper bound on i₂(G) and a lower bound when G is a cactus.
Keywords:
k-independent, cactus
@article{DMGT_2008_28_1_a10,
author = {Blidia, Mostafa and Chellali, Mustapha and Favaron, Odile and Meddah, Nac\'era},
title = {Maximal k-independent sets in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {151--163},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a10/}
}
TY - JOUR AU - Blidia, Mostafa AU - Chellali, Mustapha AU - Favaron, Odile AU - Meddah, Nacéra TI - Maximal k-independent sets in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2008 SP - 151 EP - 163 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a10/ LA - en ID - DMGT_2008_28_1_a10 ER -
%0 Journal Article %A Blidia, Mostafa %A Chellali, Mustapha %A Favaron, Odile %A Meddah, Nacéra %T Maximal k-independent sets in graphs %J Discussiones Mathematicae. Graph Theory %D 2008 %P 151-163 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a10/ %G en %F DMGT_2008_28_1_a10
Blidia, Mostafa; Chellali, Mustapha; Favaron, Odile; Meddah, Nacéra. Maximal k-independent sets in graphs. Discussiones Mathematicae. Graph Theory, Tome 28 (2008) no. 1, pp. 151-163. http://geodesic.mathdoc.fr/item/DMGT_2008_28_1_a10/