Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_3_a7, author = {Ferrara, Michael and Gould, Ronald and Hartke, Stephen}, title = {The structure and existence of 2-factors in iterated line graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {507--526}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a7/} }
TY - JOUR AU - Ferrara, Michael AU - Gould, Ronald AU - Hartke, Stephen TI - The structure and existence of 2-factors in iterated line graphs JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 507 EP - 526 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a7/ LA - en ID - DMGT_2007_27_3_a7 ER -
%0 Journal Article %A Ferrara, Michael %A Gould, Ronald %A Hartke, Stephen %T The structure and existence of 2-factors in iterated line graphs %J Discussiones Mathematicae. Graph Theory %D 2007 %P 507-526 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a7/ %G en %F DMGT_2007_27_3_a7
Ferrara, Michael; Gould, Ronald; Hartke, Stephen. The structure and existence of 2-factors in iterated line graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 507-526. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a7/
[1] J.A. Bondy, Pancyclic graphs, I, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
[2] G. Chartrand, The existence of complete cycles in repeated line-graphs, Bull. Amer. Math. Society 71 (1965) 668-670, doi: 10.1090/S0002-9904-1965-11389-1.
[3] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.
[4] R.J. Gould, Advances on the hamiltonian problem-a survey, Graphs Combin. 19 (2003) 7-52, doi: 10.1007/s00373-002-0492-x.
[5] R.J. Gould and E.A. Hynds, A note on cycles in 2-factors of line graphs, Bull. of the ICA 26 (1999) 46-48.
[6] F. Harary and C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709, doi: 10.4153/CMB-1965-051-3.
[7] S.G. Hartke and A.W. Higgins, Minimum degree growth of the iterated line graph, Ars Combin. 69 (2003) 275-283.
[8] S.G. Hartke and K. Ponto, k-Ordered hamiltonicity of iterated line graphs, preprint.
[9] M. Knor and L'. Niepel, Distance independent domination in iterated line graphs, Ars Combin. 79 (2006) 161-170.
[10] M. Knor and L'. Niepel, Iterated Line Graphs are Maximally Ordered, J. Graph Theory 52 (2006) 171-180, doi: 10.1002/jgt.20152.
[11] Z. Liu and L. Xiong, Hamiltonian iterated line graphs, Discrete Math 256 (2002) 407-422, doi: 10.1016/S0012-365X(01)00442-3.
[12] V.D. Samodivkin, P-indices of graphs, Godishnik Vissh. Uchebn. Zaved. Prilozhna Mat. 23 (1987) 165-172.
[13] D.B. West, Introduction to Graph Theory, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).