Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_3_a6, author = {Chartrand, Gary and Nebesk\'y, Ladislav and Zhang, Ping}, title = {Distance defined by spanning trees in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {485--506}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a6/} }
TY - JOUR AU - Chartrand, Gary AU - Nebeský, Ladislav AU - Zhang, Ping TI - Distance defined by spanning trees in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 485 EP - 506 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a6/ LA - en ID - DMGT_2007_27_3_a6 ER -
Chartrand, Gary; Nebeský, Ladislav; Zhang, Ping. Distance defined by spanning trees in graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 485-506. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a6/
[1] H. Bielak and M.M. Sysło, Peripheral vertices in graphs, Studia Sci. Math. Hungar. 18 (1983) 269-75.
[2] F. Buckley, Z. Miller and P.J. Slater, On graphs containing a given graph as center, J. Graph Theory 5 (1981) 427-434, doi: 10.1002/jgt.3190050413.
[3] G. Chartrand and P. Zhang, Introduction to Graph Theory (McGraw-Hill, Boston, 2005).
[4] F. Harary and R.Z. Norman, The dissimilarity characteristic of Husimi trees, Ann. of Math. 58 (1953) 134-141, doi: 10.2307/1969824.
[5] L. Nebeský, A characterization of the set of all shortest paths in a connected graph, Math. Bohem. 119 (1994) 15-20.
[6] L. Nebeský, A new proof of a characterization of the set of all geodesics in a connected graph, Czech. Math. J. 48 (1998) 809-813, doi: 10.1023/A:1022404126392.
[7] L. Nebeský, The set of geodesics in a graph, Discrete Math. 235 (2001) 323-326, doi: 10.1016/S0012-365X(00)00285-5.