Some totally 4-choosable multigraphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 425-455.

Voir la notice de l'article provenant de la source Library of Science

It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the List-Total-Colouring Conjecture, that ch”(G) = χ”(G) for every multigraph G, is true for all multigraphs of this type. As a consequence, if G is a graph with maximum degree 3 and girth at least 10 that can be embedded in the plane, projective plane, torus or Klein bottle, then ch”(G) = χ”(G) = 4. Some further total choosability results are discussed for planar graphs with sufficiently large maximum degree and girth.
Keywords: maximum average degree, planar graph, total choosability, list total colouring
@article{DMGT_2007_27_3_a3,
     author = {Woodall, Douglas},
     title = {Some totally 4-choosable multigraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {425--455},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a3/}
}
TY  - JOUR
AU  - Woodall, Douglas
TI  - Some totally 4-choosable multigraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 425
EP  - 455
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a3/
LA  - en
ID  - DMGT_2007_27_3_a3
ER  - 
%0 Journal Article
%A Woodall, Douglas
%T Some totally 4-choosable multigraphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 425-455
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a3/
%G en
%F DMGT_2007_27_3_a3
Woodall, Douglas. Some totally 4-choosable multigraphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 425-455. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a3/

[1] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992) 125-134, doi: 10.1007/BF01204715.

[2] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780.

[3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152.

[4] A. Chetwynd, Total colourings of graphs, in: R. Nelson and R.J. Wilson, eds, Graph Colourings (Milton Keynes, 1988), Pitman Res. Notes Math. Ser. 218 (Longman Sci. Tech., Harlow, 1990) 65-77.

[5] P. Erdös, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr. Numer. 26 (1980) 125-157.

[6] M. Juvan, B. Mohar and R. Skrekovski, List total colourings of graphs, Combin. Probab. Comput. 7 (1998) 181-188, doi: 10.1017/S0963548397003210.

[7] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271, doi: 10.1016/0095-8956(75)90089-1.

[8] V.G. Vizing, Colouring the vertices of a graph in prescribed colours (in Russian), Metody Diskret. Analiz. 29 (1976) 3-10.

[9] W. Wang, Total chromatic number of planar graphs with maximum degree 10, J. Graph Theory 54 (2007) 91-102, doi: 10.1002/jgt.20195.

[10] D.R. Woodall, List colourings of graphs, in: J.W.P. Hirschfeld, ed., Surveys in Combinatorics, 2001, London Math. Soc. Lecture Note Ser. 288 (Cambridge Univ. Press, Cambridge, 2001) 269-301.