The Chvátal-Erdős condition and 2-factors with a specified number of components
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 401-407.

Voir la notice de l'article provenant de la source Library of Science

Let G be a 2-connected graph of order n satisfying α(G) = a ≤ κ(G), where α(G) and κ(G) are the independence number and the connectivity of G, respectively, and let r(m,n) denote the Ramsey number. The well-known Chvátal-Erdös Theorem states that G has a hamiltonian cycle. In this paper, we extend this theorem, and prove that G has a 2-factor with a specified number of components if n is sufficiently large. More precisely, we prove that (1) if n ≥ k·r(a+4, a+1), then G has a 2-factor with k components, and (2) if n ≥ r(2a+3, a+1)+3(k-1), then G has a 2-factor with k components such that all components but one have order three.
Keywords: Chvátal-Erdös condition, 2-factor, hamiltonian cycle, Ramsey number
@article{DMGT_2007_27_3_a1,
     author = {Chen, Guantao and Gould, Ronald and Kawarabayashi, Ken-ichi and Ota, Katsuhiro and Saito, Akira and Schiermeyer, Ingo},
     title = {The {Chv\'atal-Erd\H{o}s} condition and 2-factors with a specified number of components},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {401--407},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/}
}
TY  - JOUR
AU  - Chen, Guantao
AU  - Gould, Ronald
AU  - Kawarabayashi, Ken-ichi
AU  - Ota, Katsuhiro
AU  - Saito, Akira
AU  - Schiermeyer, Ingo
TI  - The Chvátal-Erdős condition and 2-factors with a specified number of components
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 401
EP  - 407
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/
LA  - en
ID  - DMGT_2007_27_3_a1
ER  - 
%0 Journal Article
%A Chen, Guantao
%A Gould, Ronald
%A Kawarabayashi, Ken-ichi
%A Ota, Katsuhiro
%A Saito, Akira
%A Schiermeyer, Ingo
%T The Chvátal-Erdős condition and 2-factors with a specified number of components
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 401-407
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/
%G en
%F DMGT_2007_27_3_a1
Chen, Guantao; Gould, Ronald; Kawarabayashi, Ken-ichi; Ota, Katsuhiro; Saito, Akira; Schiermeyer, Ingo. The Chvátal-Erdős condition and 2-factors with a specified number of components. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 401-407. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/

[1] A. Bondy, A remark on two sufficient conditions for Hamilton cycles, Discrete Math. 22 (1978) 191-194, doi: 10.1016/0012-365X(78)90124-3.

[2] S. Brandt, G. Chen, R. Faudree, R. Gould and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2165::AID-JGT4>3.0.CO;2-O

[3] G. Chartrand and L. Lesniak, Graphs Digraphs (3rd ed.) (Wadsworth Brooks/Cole, Monterey, CA, 1996).

[4] V. Chvátal and P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9.

[5] Y. Egawa, personal communication.

[6] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998) 487-492, doi: 10.1007/s004930050034.

[7] A. Kaneko and K. Yoshimoto, A 2-factor with two components of a graph satisfying the Chvátal-Erdös condition, J. Graph Theory 43 (2003) 269-279, doi: 10.1002/jgt.10119.

[8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.