Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_3_a1, author = {Chen, Guantao and Gould, Ronald and Kawarabayashi, Ken-ichi and Ota, Katsuhiro and Saito, Akira and Schiermeyer, Ingo}, title = {The {Chv\'atal-Erd\H{o}s} condition and 2-factors with a specified number of components}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {401--407}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/} }
TY - JOUR AU - Chen, Guantao AU - Gould, Ronald AU - Kawarabayashi, Ken-ichi AU - Ota, Katsuhiro AU - Saito, Akira AU - Schiermeyer, Ingo TI - The Chvátal-Erdős condition and 2-factors with a specified number of components JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 401 EP - 407 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/ LA - en ID - DMGT_2007_27_3_a1 ER -
%0 Journal Article %A Chen, Guantao %A Gould, Ronald %A Kawarabayashi, Ken-ichi %A Ota, Katsuhiro %A Saito, Akira %A Schiermeyer, Ingo %T The Chvátal-Erdős condition and 2-factors with a specified number of components %J Discussiones Mathematicae. Graph Theory %D 2007 %P 401-407 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/ %G en %F DMGT_2007_27_3_a1
Chen, Guantao; Gould, Ronald; Kawarabayashi, Ken-ichi; Ota, Katsuhiro; Saito, Akira; Schiermeyer, Ingo. The Chvátal-Erdős condition and 2-factors with a specified number of components. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 401-407. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a1/
[1] A. Bondy, A remark on two sufficient conditions for Hamilton cycles, Discrete Math. 22 (1978) 191-194, doi: 10.1016/0012-365X(78)90124-3.
[2] S. Brandt, G. Chen, R. Faudree, R. Gould and L. Lesniak, Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165-173, doi: 10.1002/(SICI)1097-0118(199702)24:2165::AID-JGT4>3.0.CO;2-O
[3] G. Chartrand and L. Lesniak, Graphs Digraphs (3rd ed.) (Wadsworth Brooks/Cole, Monterey, CA, 1996).
[4] V. Chvátal and P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9.
[5] Y. Egawa, personal communication.
[6] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998) 487-492, doi: 10.1007/s004930050034.
[7] A. Kaneko and K. Yoshimoto, A 2-factor with two components of a graph satisfying the Chvátal-Erdös condition, J. Graph Theory 43 (2003) 269-279, doi: 10.1002/jgt.10119.
[8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.