On θ-graphs of partial cubes
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 313-321.

Voir la notice de l'article provenant de la source Library of Science

The Θ-graph Θ(G) of a partial cube G is the intersection graph of the equivalence classes of the Djoković-Winkler relation. Θ-graphs that are 2-connected, trees, or complete graphs are characterized. In particular, Θ(G) is complete if and only if G can be obtained from K₁ by a sequence of (newly introduced) dense expansions. Θ-graphs are also compared with familiar concepts of crossing graphs and τ-graphs.
Keywords: intersection graph, partial cube, median graph, expansion theorem, Cartesian product of graphs
@article{DMGT_2007_27_2_a7,
     author = {Klav\v{z}ar, Sandi and Kovse, Matjaz},
     title = {On \ensuremath{\theta}-graphs of partial cubes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {313--321},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a7/}
}
TY  - JOUR
AU  - Klavžar, Sandi
AU  - Kovse, Matjaz
TI  - On θ-graphs of partial cubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 313
EP  - 321
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a7/
LA  - en
ID  - DMGT_2007_27_2_a7
ER  - 
%0 Journal Article
%A Klavžar, Sandi
%A Kovse, Matjaz
%T On θ-graphs of partial cubes
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 313-321
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a7/
%G en
%F DMGT_2007_27_2_a7
Klavžar, Sandi; Kovse, Matjaz. On θ-graphs of partial cubes. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 313-321. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a7/

[1] B. Bresar, Coloring of the Θ-graph of a median graph, Problem 2005.3, Maribor Graph Theory Problems. http://www-mat.pfmb.uni-mb.si/personal/klavzar/MGTP/index.html.

[2] B. Bresar, W. Imrich and S. Klavžar, Tree-like isometric subgraphs of hypercubes, Discuss. Math. Graph Theory 23 (2003) 227-240, doi: 10.7151/dmgt.1199.

[3] B. Bresar and S. Klavžar, Crossing graphs as joins of graphs and Cartesian products of median graphs, SIAM J. Discrete Math. 21 (2007) 26-32, doi: 10.1137/050622997.

[4] B. Bresar and T. Kraner Sumenjak, Θ-graphs of partial cubes and strong edge colorings, Ars Combin., to appear.

[5] V.D. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics 1 (1988) 6-9, doi: 10.1007/BF01069520.

[6] M.M. Deza and M. Laurent, Geometry of cuts and metrics, Algorithms and Combinatorics, 15 (Springer-Verlag, Berlin, 1997).

[7] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory (B) 14 (1973) 263-267, doi: 10.1016/0095-8956(73)90010-5.

[8] R.J. Faudree, A. Gyarfas, R.H. Schelp and Z. Tuza, Induced matchings in bipartite graphs, Discrete Math. 78 (1989) 83-87, doi: 10.1016/0012-365X(89)90163-5.

[9] W. Imrich and S. Klavžar, A convexity lemma and expansion procedures for bipartite graphs, European J. Combin. 19 (1998) 677-685, doi: 10.1006/eujc.1998.0229.

[10] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).

[11] S. Klavžar and M. Kovse, Partial cubes and their τ-graphs, European J. Combin. 28 (2007) 1037-1042.

[12] S. Klavžar and H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math. 15 (2002) 235-251, doi: 10.1137/S0895480101383202.

[13] F.R. McMorris, H.M. Mulder and F.R. Roberts, The median procedure on median graphs, Discrete Appl. Math. 84 (1998) 165-181, doi: 10.1016/S0166-218X(98)00003-1.

[14] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204, doi: 10.1016/0012-365X(78)90199-1.

[15] H.M. Mulder, The Interval Function of a Graph (Math. Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980).

[16] M. van de Vel, Theory of Convex Structures (North-Holland, Amsterdam, 1993).

[17] A. Vesel, Characterization of resonance graphs of catacondensed hexagonal graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 195-208.

[18] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225, doi: 10.1016/0166-218X(84)90069-6.