Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_2_a6, author = {Llano, Bernardo and Olsen, Mika}, title = {Infinite families of tight regular tournaments}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {299--311}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a6/} }
Llano, Bernardo; Olsen, Mika. Infinite families of tight regular tournaments. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 299-311. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a6/
[1] J. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.
[2] L.W. Beineke and K.B. Reid, Tournaments, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory (Academic Press, New York, 1979) 169-204.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976).
[4] S. Bowser, C. Cable and R. Lundgren, Niche graphs and mixed pair graphs of tournaments, J. Graph Theory 31 (1999) 319-332, doi: 10.1002/(SICI)1097-0118(199908)31:4319::AID-JGT7>3.0.CO;2-S
[5] H. Cho, F. Doherty, S-R. Kim and J. Lundgren, Domination graphs of regular tournaments II, Congr. Numer. 130 (1998) 95-111.
[6] H. Cho, S-R. Kim and J. Lundgren, Domination graphs of regular tournaments, Discrete Math. 252 (2002) 57-71, doi: 10.1016/S0012-365X(01)00289-8.
[7] D.C. Fisher, D. Guichard, J.R. Lundgren, S.K. Merz and K.B. Reid, Domination graphs with nontrivial components, Graphs Combin. 17 (2001) 227-236, doi: 10.1007/s003730170036.
[8] D.C. Fisher and J.R. Lundgren, Connected domination graphs of tournaments, J. Combin. Math. Combin. Comput. 31 (1999) 169-176.
[9] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid, The domination and competition graphs of a tournament, J. Graph Theory 29 (1998) 103-110, doi: 10.1002/(SICI)1097-0118(199810)29:2103::AID-JGT6>3.0.CO;2-V
[10] H. Galeana-Sánchez and V. Neumann-Lara, A class of tight circulant tournaments, Discuss. Math. Graph Theory 20 (2000) 109-128, doi: 10.7151/dmgt.1111.
[11] B. Llano and V. Neumann-Lara, Circulant tournaments of prime order are tight, (submitted).
[12] J.W. Moon, Topics on Tournaments (Holt, Rinehart Winston, New York, 1968).
[13] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory (B) 33 (1982) 265-270, doi: 10.1016/0095-8956(82)90046-6.
[14] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197/198 (1999) 617-632.
[15] V. Neumann-Lara and M. Olsen, Tame tournaments and their dichromatic number, (submitted).
[16] K.B. Reid, Tournaments, in: Jonathan Gross, Jay Yellen (eds.), Handbook of Graph Theory (CRC Press, 2004) 156-184.