Subgraph densities in hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 281-297.

Voir la notice de l'article provenant de la source Library of Science

Let r ≥ 2 be an integer. A real number α ∈ [0,1) is a jump for r if for any ε > 0 and any integer m ≥ r, any r-uniform graph with n > n₀(ε,m) vertices and density at least α+ε contains a subgraph with m vertices and density at least α+c, where c = c(α) > 0 does not depend on ε and m. A result of Erdös, Stone and Simonovits implies that every α ∈ [0,1) is a jump for r = 2. Erdös asked whether the same is true for r ≥ 3. Frankl and Rödl gave a negative answer by showing an infinite sequence of non-jumps for every r ≥ 3. However, there are still a lot of open questions on determining whether or not a number is a jump for r ≥ 3. In this paper, we first find an infinite sequence of non-jumps for r = 4, then extend one of them to every r ≥ 4. Our approach is based on the techniques developed by Frankl and Rödl.
Keywords: Erdös jumping constant conjecture, Lagrangian, optimal vector
@article{DMGT_2007_27_2_a5,
     author = {Peng, Yuejian},
     title = {Subgraph densities in hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {281--297},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/}
}
TY  - JOUR
AU  - Peng, Yuejian
TI  - Subgraph densities in hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 281
EP  - 297
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/
LA  - en
ID  - DMGT_2007_27_2_a5
ER  - 
%0 Journal Article
%A Peng, Yuejian
%T Subgraph densities in hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 281-297
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/
%G en
%F DMGT_2007_27_2_a5
Peng, Yuejian. Subgraph densities in hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 281-297. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/

[1] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, NY, 1982).

[2] P. Erdös, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183-190, doi: 10.1007/BF02759942.

[3] P. Erdös and M. Simonovits, A limit theorem in graph theory, Studia Sci. Mat. Hung. Acad. 1 (1966) 51-57.

[4] P. Erdös and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091, doi: 10.1090/S0002-9904-1946-08715-7.

[5] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blow-ups of the small Witt-designs, J. Combin. Theory (A) 52 (1989) 129-147, doi: 10.1016/0097-3165(89)90067-8.

[6] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149-159, doi: 10.1007/BF02579215.

[7] P. Frankl, Y. Peng, V. Rödl and J. Talbot, A note on the jumping constant conjecture of Erdös, J. Combin. Theory (B) 97 (2007) 204-216, doi: 10.1016/j.jctb.2006.05.004.

[8] G. Katona, T. Nemetz and M. Simonovits, On a graph problem of Turán, Mat. Lapok 15 (1964) 228-238.

[9] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533-540, doi: 10.4153/CJM-1965-053-6.

[10] Y. Peng, Non-jumping numbers for 4-uniform hypergraphs, Graphs and Combinatorics 23 (2007) 97-110, doi: 10.1007/s00373-006-0689-5.

[11] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (I), submitted.

[12] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (II), Discrete Math. 307 (2007) 1754-1766, doi: 10.1016/j.disc.2006.09.024.

[13] J. Talbot, Lagrangians of hypergraphs, Combinatorics, Probability Computing 11 (2002) 199-216, doi: 10.1017/S0963548301005053.