Subgraph densities in hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 281-297

Voir la notice de l'article provenant de la source Library of Science

Let r ≥ 2 be an integer. A real number α ∈ [0,1) is a jump for r if for any ε > 0 and any integer m ≥ r, any r-uniform graph with n > n₀(ε,m) vertices and density at least α+ε contains a subgraph with m vertices and density at least α+c, where c = c(α) > 0 does not depend on ε and m. A result of Erdös, Stone and Simonovits implies that every α ∈ [0,1) is a jump for r = 2. Erdös asked whether the same is true for r ≥ 3. Frankl and Rödl gave a negative answer by showing an infinite sequence of non-jumps for every r ≥ 3. However, there are still a lot of open questions on determining whether or not a number is a jump for r ≥ 3. In this paper, we first find an infinite sequence of non-jumps for r = 4, then extend one of them to every r ≥ 4. Our approach is based on the techniques developed by Frankl and Rödl.
Keywords: Erdös jumping constant conjecture, Lagrangian, optimal vector
@article{DMGT_2007_27_2_a5,
     author = {Peng, Yuejian},
     title = {Subgraph densities in hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {281--297},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/}
}
TY  - JOUR
AU  - Peng, Yuejian
TI  - Subgraph densities in hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 281
EP  - 297
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/
LA  - en
ID  - DMGT_2007_27_2_a5
ER  - 
%0 Journal Article
%A Peng, Yuejian
%T Subgraph densities in hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 281-297
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/
%G en
%F DMGT_2007_27_2_a5
Peng, Yuejian. Subgraph densities in hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 281-297. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a5/