Erdős regular graphs of even degree
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 269-279.

Voir la notice de l'article provenant de la source Library of Science

In 1960, Dirac put forward the conjecture that r-connected 4-critical graphs exist for every r ≥ 3. In 1989, Erdös conjectured that for every r ≥ 3 there exist r-regular 4-critical graphs. A method for finding r-regular 4-critical graphs and the numbers of such graphs for r ≤ 10 have been reported in [6,7]. Results of a computer search for graphs of degree r = 12,14,16 are presented. All the graphs found are both r-regular and r-connected.
Keywords: vertex coloring, 4-critical graph, circulant, regular graph, vertex connectivity
@article{DMGT_2007_27_2_a4,
     author = {Dobrynin, Andrey and Mel'nikov, Leonid and Pyatkin, Artem},
     title = {Erd\H{o}s regular graphs of even degree},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {269--279},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a4/}
}
TY  - JOUR
AU  - Dobrynin, Andrey
AU  - Mel'nikov, Leonid
AU  - Pyatkin, Artem
TI  - Erdős regular graphs of even degree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 269
EP  - 279
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a4/
LA  - en
ID  - DMGT_2007_27_2_a4
ER  - 
%0 Journal Article
%A Dobrynin, Andrey
%A Mel'nikov, Leonid
%A Pyatkin, Artem
%T Erdős regular graphs of even degree
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 269-279
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a4/
%G en
%F DMGT_2007_27_2_a4
Dobrynin, Andrey; Mel'nikov, Leonid; Pyatkin, Artem. Erdős regular graphs of even degree. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a4/

[1] R.L. Brooks, On coloring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.

[2] Chao Chong-Yun, A critically chromatic graph, Discrete Math. 172 (1997) 3-7, doi: 10.1016/S0012-365X(96)00262-2.

[3] G.A. Dirac, 4-chrome Graphen Trennende und vollständige 4-Graphen, Math. Nachr. 22 (1960) 51-60, doi: 10.1002/mana.19600220106.

[4] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85, doi: 10.1002/mana.19600220107.

[5] A.A. Dobrynin, L.S. Mel'nikov and A.V. Pyatkin, 4-chromatic edge-critical regular graphs with high connectivity, Proc. Russian Conf. Discrete Analysis and Operation Research (DAOR-2002), Novosibirsk, pp. 25-30 (in Russian).

[6] A.A. Dobrynin, L.S. Mel'nikov and A.V. Pyatkin, On 4-chromatic edge-critical regular graphs of high connectivity, Discrete Math. 260 (2003) 315-319, doi: 10.1016/S0012-365X(02)00668-4.

[7] A.A. Dobrynin, L.S. Mel'nikov and A.V. Pyatkin, Regular 4-critical graphs of even degree, J. Graph Theory 46 (2004) 103-130, doi: 10.1002/jgt.10176.

[8] P. Erdös, On some aspects of my work with Gabriel Dirac, in: L.D. Andersen, I.T. Jakobsen, C. Thomassen, B. Toft and P.D. Vestergaard (Eds.), Graph Theory in Memory of G.A. Dirac, Annals of Discrete Mathematics, Vol. 41, North-Holland, 1989, pp. 111-116.

[9] V.A. Evstigneev and L.S. Mel'nikov, Problems and Exercises on Graph Theory and Combinatorics (Novosibirsk State University, Novosibirsk, 1981) (in Russian).

[10] T. Gallai, Kritische Graphen I., Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 165-192.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979).

[12] F. Göbel and E.A. Neutel, Cyclic graphs, Discrete Appl. Math. 99 (2000) 3-12, doi: 10.1016/S0166-218X(99)00121-3.

[13] T.R. Jensen, Dense critical and vertex-critical graphs, Discrete Math. 258 (2002) 63-84, doi: 10.1016/S0012-365X(02)00262-5.

[14] T.R. Jensen and G.F. Royle, Small graphs of chromatic number 5: a computer search, J. Graph Theory 19 (1995) 107-116, doi: 10.1002/jgt.3190190111.

[15] T.R. Jensen and B. Toft, Graph Coloring Problems (John Wiley Sons, USA, 1995).

[16] G. Koester, Note to a problem of T. Gallai and G.A. Dirac, Combinatorica 5 (1985) 227-228, doi: 10.1007/BF02579365.

[17] G. Koester, 4-critical 4-valent planar graphs constructed with crowns, Math. Scand. 67 (1990) 15-22.

[18] G. Koester, On 4-critical planar graphs with high edge density, Discrete Math. 98 (1991) 147-151, doi: 10.1016/0012-365X(91)90039-5.

[19] W. Mader, Über den Zusammenhang symmetrischer Graphen, Arch. Math. (Basel) 21 (1970) 331-336, doi: 10.1007/BF01220924.

[20] W. Mader, Eine Eigenschaft der Atome endlicher Graphen, Arch. Math. (Basel) 22 (1971) 333-336, doi: 10.1007/BF01222585.

[21] A.V. Pyatkin, 6-regular 4-critical graph, J. Graph Theory 41 (2002) 286-291, doi: 10.1002/jgt.10066.

[22] M.E. Watkins, Some classes of hypoconnected vertex-transitive graphs, in: Recent Progress in Combinatorics (Academic Press, New-York, 1969) 323-328.

[23] M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970) 23-29, doi: 10.1016/S0021-9800(70)80005-9.

[24] D.A. Youngs, Gallai's problem on Dirac's construction, Discrete Math. 101 (1992) 343-350, doi: 10.1016/0012-365X(92)90615-M.