On the second largest eigenvalue of a mixed graph
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 373-384.

Voir la notice de l'article provenant de la source Library of Science

Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).
Keywords: mixed graph, Laplacian eigenvalue, degree
@article{DMGT_2007_27_2_a12,
     author = {Zhou, Jun and Fan, Yi-Zheng and Wang, Yi},
     title = {On the second largest eigenvalue of a mixed graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {373--384},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a12/}
}
TY  - JOUR
AU  - Zhou, Jun
AU  - Fan, Yi-Zheng
AU  - Wang, Yi
TI  - On the second largest eigenvalue of a mixed graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 373
EP  - 384
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a12/
LA  - en
ID  - DMGT_2007_27_2_a12
ER  - 
%0 Journal Article
%A Zhou, Jun
%A Fan, Yi-Zheng
%A Wang, Yi
%T On the second largest eigenvalue of a mixed graph
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 373-384
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a12/
%G en
%F DMGT_2007_27_2_a12
Zhou, Jun; Fan, Yi-Zheng; Wang, Yi. On the second largest eigenvalue of a mixed graph. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 373-384. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a12/

[1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623.

[2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646.

[3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148.

[4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra 53 (2005) 97-113, doi: 10.1080/03081080410001681540.

[5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 374 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5.

[6] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.

[7] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633.

[8] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 221-229, doi: 10.1137/S0895480191222653.

[9] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.

[10] R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1985).

[11] Y.-P. Hou, J.-S. Li and Y.-L. Pan, On the Laplacian eigenvalues of signed graphs, Linear and Multilinear Algebra 51 (2003) 21-30, doi: 10.1080/0308108031000053611.

[12] J.-S. Li and Y.-L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear and Multilinear Algebra 48 (2000) 117-121, doi: 10.1080/03081080008818663.

[13] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1998) 143-176, doi: 10.1016/0024-3795(94)90486-3.

[14] B. Mohar, Some applications of Laplacian eigenvalues of graphs, in: Graph Symmetry, G. Hahn and G. Sabidussi, eds (Kluwer Academic Publishers, Dordrecht, 1997) 225-275.

[15] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9.

[16] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8.