Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_2_a1, author = {Ainouche, Ahmed and Lapiquonne, Serge}, title = {Variations on a sufficient condition for {Hamiltonian} graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {229--240}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a1/} }
TY - JOUR AU - Ainouche, Ahmed AU - Lapiquonne, Serge TI - Variations on a sufficient condition for Hamiltonian graphs JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 229 EP - 240 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a1/ LA - en ID - DMGT_2007_27_2_a1 ER -
Ainouche, Ahmed; Lapiquonne, Serge. Variations on a sufficient condition for Hamiltonian graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 229-240. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a1/
[1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Applied Math. 17 (1987) 213-221, doi: 10.1016/0166-218X(87)90025-4.
[2] A. Ainouche, An improvement of Fraisse's sufficient condition for hamiltonian graphs, J. Graph Theory 16 (1992) 529-543, doi: 10.1002/jgt.3190160602.
[3] A. Ainouche, O. Favaron and H. Li, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. 184 (1998) 1-13, doi: 10.1016/S0012-365X(97)00157-X.
[4] A. Ainouche and M. Kouider, Hamiltonism and Partially Square Graphs, Graphs and Combinatorics 15 (1999) 257-265, doi: 10.1007/s003730050059.
[5] A. Ainouche and I. Schiermeyer, 0-dual closures for several classes of graphs, Graphs and Combinatorics 19 (2003) 297-307, doi: 10.1007/s00373-002-0523-y.
[6] A. Ainouche, Extension of several sufficient conditions for hamiltonian graphs, Discuss. Math. Graph Theory 26 (2006) 23-39, doi: 10.7151/dmgt.1298.
[7] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976.)
[8] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135, doi: 10.1016/0012-365X(76)90078-9.
[9] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degrees sums and neighborhood intersections, Discrete Math. 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I.
[10] Z. Wu, X. Zhang and X. Zhou, Hamiltonicity, neighborhood intersections and the partially square graphs, Discrete Math. 242 (2002) 245-254, doi: 10.1016/S0012-365X(00)00394-0.