Characterization of block graphs with equal 2-domination number and domination number plus one
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 93-103

Voir la notice de l'article provenant de la source Library of Science

Let G be a simple graph, and let p be a positive integer. A subset D ⊆ V(G) is a p-dominating set of the graph G, if every vertex v ∈ V(G)-D is adjacent with at least p vertices of D. The p-domination number γₚ(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ₁(G) is the usual domination number γ(G).
Keywords: domination, 2-domination, multiple domination, block graph
@article{DMGT_2007_27_1_a8,
     author = {Hansberg, Adriana and Volkmann, Lutz},
     title = {Characterization of block graphs with equal 2-domination number and domination number plus one},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/}
}
TY  - JOUR
AU  - Hansberg, Adriana
AU  - Volkmann, Lutz
TI  - Characterization of block graphs with equal 2-domination number and domination number plus one
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 93
EP  - 103
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/
LA  - en
ID  - DMGT_2007_27_1_a8
ER  - 
%0 Journal Article
%A Hansberg, Adriana
%A Volkmann, Lutz
%T Characterization of block graphs with equal 2-domination number and domination number plus one
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 93-103
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/
%G en
%F DMGT_2007_27_1_a8
Hansberg, Adriana; Volkmann, Lutz. Characterization of block graphs with equal 2-domination number and domination number plus one. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/