Characterization of block graphs with equal 2-domination number and domination number plus one
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 93-103.

Voir la notice de l'article provenant de la source Library of Science

Let G be a simple graph, and let p be a positive integer. A subset D ⊆ V(G) is a p-dominating set of the graph G, if every vertex v ∈ V(G)-D is adjacent with at least p vertices of D. The p-domination number γₚ(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ₁(G) is the usual domination number γ(G).
Keywords: domination, 2-domination, multiple domination, block graph
@article{DMGT_2007_27_1_a8,
     author = {Hansberg, Adriana and Volkmann, Lutz},
     title = {Characterization of block graphs with equal 2-domination number and domination number plus one},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/}
}
TY  - JOUR
AU  - Hansberg, Adriana
AU  - Volkmann, Lutz
TI  - Characterization of block graphs with equal 2-domination number and domination number plus one
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 93
EP  - 103
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/
LA  - en
ID  - DMGT_2007_27_1_a8
ER  - 
%0 Journal Article
%A Hansberg, Adriana
%A Volkmann, Lutz
%T Characterization of block graphs with equal 2-domination number and domination number plus one
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 93-103
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/
%G en
%F DMGT_2007_27_1_a8
Hansberg, Adriana; Volkmann, Lutz. Characterization of block graphs with equal 2-domination number and domination number plus one. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a8/

[1] M. Blidia, M. Chellali and L. Volkmann, Bounds of the 2-domination number of graphs, Utilitas Math. 71 (2006) 209-216.

[2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science (John Wiley and Sons, New York, 1985), 282-300.

[3] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (John Wiley and Sons, New York, 1985), 301-311.

[4] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079.

[5] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959) 133-138.

[6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds.), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[8] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104.

[9] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math. 191 (1998) 159-169, doi: 10.1016/S0012-365X(98)00103-4.

[10] J. Topp and L. Volkmann, On domination and independence numbers of graphs, Results Math. 17 (1990) 333-341.

[11] L. Volkmann, Foundations of Graph Theory (Springer, Wien, New York, 1996) (in German).

[12] L. Volkmann, Some remarks on lower bounds on the p-domination number in trees, J. Combin. Math. Combin. Comput., to appear.

[13] B. Xu, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi and S. Zhou, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1-10, doi: 10.1016/S0012-365X(99)00251-4.