Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_1_a6, author = {Gong, Shi-Cai and Fan, Yi-Zheng}, title = {Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {69--82}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/} }
TY - JOUR AU - Gong, Shi-Cai AU - Fan, Yi-Zheng TI - Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 69 EP - 82 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/ LA - en ID - DMGT_2007_27_1_a6 ER -
%0 Journal Article %A Gong, Shi-Cai %A Fan, Yi-Zheng %T Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two %J Discussiones Mathematicae. Graph Theory %D 2007 %P 69-82 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/ %G en %F DMGT_2007_27_1_a6
Gong, Shi-Cai; Fan, Yi-Zheng. Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/
[1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623.
[2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646.
[3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148.
[4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra, accepted for publication.
[5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 347 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5.
[6] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633.
[7] R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016.
[8] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.
[9] R.A. Horn and C.R. Johnson, Matrix analysis (Cambridge University Press, 1985).
[10] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9.
[11] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8.