Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 69-82.

Voir la notice de l'article provenant de la source Library of Science

This paper determines all nonsingular unicyclic mixed graphs on at least nine vertices with at most three Laplacian eigenvalues greater than two.
Keywords: unicyclic graph, mixed graph, Laplacian eigenvalue, matching number, spectrum
@article{DMGT_2007_27_1_a6,
     author = {Gong, Shi-Cai and Fan, Yi-Zheng},
     title = {Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/}
}
TY  - JOUR
AU  - Gong, Shi-Cai
AU  - Fan, Yi-Zheng
TI  - Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 69
EP  - 82
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/
LA  - en
ID  - DMGT_2007_27_1_a6
ER  - 
%0 Journal Article
%A Gong, Shi-Cai
%A Fan, Yi-Zheng
%T Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 69-82
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/
%G en
%F DMGT_2007_27_1_a6
Gong, Shi-Cai; Fan, Yi-Zheng. Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a6/

[1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623.

[2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646.

[3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148.

[4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra, accepted for publication.

[5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 347 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5.

[6] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633.

[7] R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016.

[8] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.

[9] R.A. Horn and C.R. Johnson, Matrix analysis (Cambridge University Press, 1985).

[10] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9.

[11] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8.