New sufficient conditions for hamiltonian and pancyclic graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 29-38.

Voir la notice de l'article provenant de la source Library of Science

For a graph G of order n we consider the unique partition of its vertex set V(G) = A ∪ B with A = v ∈ V(G): d(v) ≥ n/2 and B = v ∈ V(G):d(v) n/2. Imposing conditions on the vertices of the set B we obtain new sufficient conditions for hamiltonian and pancyclic graphs.
Keywords: hamiltonian graphs, pancyclic graphs, closure
@article{DMGT_2007_27_1_a2,
     author = {Schiermeyer, Ingo and Wo\'zniak, Mariusz},
     title = {New sufficient conditions for hamiltonian and pancyclic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a2/}
}
TY  - JOUR
AU  - Schiermeyer, Ingo
AU  - Woźniak, Mariusz
TI  - New sufficient conditions for hamiltonian and pancyclic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 29
EP  - 38
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a2/
LA  - en
ID  - DMGT_2007_27_1_a2
ER  - 
%0 Journal Article
%A Schiermeyer, Ingo
%A Woźniak, Mariusz
%T New sufficient conditions for hamiltonian and pancyclic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 29-38
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a2/
%G en
%F DMGT_2007_27_1_a2
Schiermeyer, Ingo; Woźniak, Mariusz. New sufficient conditions for hamiltonian and pancyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a2/

[1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Appl. Math. 17 (1987) 213-221, doi: 10.1016/0166-218X(87)90025-4.

[2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.

[3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136, doi: 10.1016/0012-365X(76)90078-9.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier North Holland, New York, 1976).

[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[6] R.J. Faudree, R.Häggkvist and R.H. Schelp, Pancyclic graphs - connected Ramsey number, Ars Combin. 11 (1981) 37-49.

[7] E. Flandrin, H. Li, A. Marczyk and M. Woźniak, A note on a new condition implying pancyclism, Discuss. Math. Graph Theory 21 (2001) 137-143, doi: 10.7151/dmgt.1138.

[8] G. Jin, Z. Liu and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combinatoria 35 (1993) 281-290.

[9] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.

[10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.