Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_1_a2, author = {Schiermeyer, Ingo and Wo\'zniak, Mariusz}, title = {New sufficient conditions for hamiltonian and pancyclic graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {29--38}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a2/} }
TY - JOUR AU - Schiermeyer, Ingo AU - Woźniak, Mariusz TI - New sufficient conditions for hamiltonian and pancyclic graphs JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 29 EP - 38 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a2/ LA - en ID - DMGT_2007_27_1_a2 ER -
Schiermeyer, Ingo; Woźniak, Mariusz. New sufficient conditions for hamiltonian and pancyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a2/
[1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Appl. Math. 17 (1987) 213-221, doi: 10.1016/0166-218X(87)90025-4.
[2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
[3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136, doi: 10.1016/0012-365X(76)90078-9.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier North Holland, New York, 1976).
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[6] R.J. Faudree, R.Häggkvist and R.H. Schelp, Pancyclic graphs - connected Ramsey number, Ars Combin. 11 (1981) 37-49.
[7] E. Flandrin, H. Li, A. Marczyk and M. Woźniak, A note on a new condition implying pancyclism, Discuss. Math. Graph Theory 21 (2001) 137-143, doi: 10.7151/dmgt.1138.
[8] G. Jin, Z. Liu and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combinatoria 35 (1993) 281-290.
[9] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.
[10] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.