A new upper bound for the chromatic number of a graph
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 137-142

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced K_ω+3- C₅.
Keywords: Vertex colouring, chromatic number, upper bound
@article{DMGT_2007_27_1_a11,
     author = {Schiermeyer, Ingo},
     title = {A new upper bound for the chromatic number of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/}
}
TY  - JOUR
AU  - Schiermeyer, Ingo
TI  - A new upper bound for the chromatic number of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 137
EP  - 142
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/
LA  - en
ID  - DMGT_2007_27_1_a11
ER  - 
%0 Journal Article
%A Schiermeyer, Ingo
%T A new upper bound for the chromatic number of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 137-142
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/
%G en
%F DMGT_2007_27_1_a11
Schiermeyer, Ingo. A new upper bound for the chromatic number of a graph. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/