A new upper bound for the chromatic number of a graph
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 137-142.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph of order n with clique number ω(G), chromatic number χ(G) and independence number α(G). We show that χ(G) ≤ [(n+ω+1-α)/2]. Moreover, χ(G) ≤ [(n+ω-α)/2], if either ω + α = n + 1 and G is not a split graph or α + ω = n - 1 and G contains no induced K_ω+3- C₅.
Keywords: Vertex colouring, chromatic number, upper bound
@article{DMGT_2007_27_1_a11,
     author = {Schiermeyer, Ingo},
     title = {A new upper bound for the chromatic number of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/}
}
TY  - JOUR
AU  - Schiermeyer, Ingo
TI  - A new upper bound for the chromatic number of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 137
EP  - 142
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/
LA  - en
ID  - DMGT_2007_27_1_a11
ER  - 
%0 Journal Article
%A Schiermeyer, Ingo
%T A new upper bound for the chromatic number of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 137-142
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/
%G en
%F DMGT_2007_27_1_a11
Schiermeyer, Ingo. A new upper bound for the chromatic number of a graph. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a11/

[1] B. Baetz and D.R. Wood, Brooks' Vertex Colouring Theorem in Linear Time, TR CS-AAG-2001-05, Basser Dep. Comput. Sci., Univ. Sydney, (2001) 4 pages.

[2] C. Berge, Les problèms de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960) 123-160.

[3] C. Berge, Perfect graphs, in: Six papers on graph theory, Indian Statistical Institute, Calcutta (1963), 1-21.

[4] R.C. Brigham and R.D. Dutton, A Compilation of Relations between Graph Invariants, Networks 15 (1985) 73-107, doi: 10.1002/net.3230150108.

[5] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.

[6] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, Progress on perfect graphs, Math. Program. (B) 97 (2003) 405-422.

[7] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. (2) 164 (2006) 51-229, doi: 10.4007/annals.2006.164.51.

[8] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vusković, Recognizing Berge Graphs, Combinatorica 25 (2005) 143-186, doi: 10.1007/s00493-005-0012-8.

[9] P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38, doi: 10.4153/CJM-1959-003-9.

[10] J.L. Gross and J. Yellen, Handbook of Graph Theory (CRC Press, 2004).

[11] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271, doi: 10.1016/0095-8956(75)90089-1.

[12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658.

[13] B. Randerath and I. Schiermeyer, Vertex colouring and forbidden subgraphs - a survey, Graphs and Combinatorics 20 (2004) 1-40, doi: 10.1007/s00373-003-0540-1.