Global alliances and independence in trees
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 19-27.

Voir la notice de l'article provenant de la source Library of Science

A global defensive (respectively, offensive) alliance in a graph G = (V,E) is a set of vertices S ⊆ V with the properties that every vertex in V-S has at least one neighbor in S, and for each vertex v in S (respectively, in V-S) at least half the vertices from the closed neighborhood of v are in S. These alliances are called strong if a strict majority of vertices from the closed neighborhood of v must be in S. For each kind of alliance, the associated parameter is the minimum cardinality of such an alliance. We determine relationships among these four parameters and the vertex independence number for trees.
Keywords: defensive alliance, offensive alliance, global alliance, domination, trees, independence number
@article{DMGT_2007_27_1_a1,
     author = {Chellali, Mustapha and Haynes, Teresa},
     title = {Global alliances and independence in trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a1/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Haynes, Teresa
TI  - Global alliances and independence in trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 19
EP  - 27
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a1/
LA  - en
ID  - DMGT_2007_27_1_a1
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Haynes, Teresa
%T Global alliances and independence in trees
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 19-27
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a1/
%G en
%F DMGT_2007_27_1_a1
Chellali, Mustapha; Haynes, Teresa. Global alliances and independence in trees. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 19-27. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a1/

[1] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Austral. J. Combin. 33 (2005) 317-327.

[2] G. Chartrand and L. Lesniak, Graphs Digraphs: Third Edition (Chapman Hall, London, 1996).

[3] E.J. Cockayne, O. Favaron, C. Payan and A.G. Thomason, Contributions to the theory of domination, independence, and irredundance in graphs, Discrete Math. 33 (1981) 249-258, doi: 10.1016/0012-365X(81)90268-5.

[4] T.W. Haynes, S.T. Hedetniemi, and M.A. Henning, Global defensive alliances in graphs, The Electronic J. Combin. 10 (2003) R47.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[7] S.M. Hedetniemi, S.T. Hedetniemi and P. Kristiansen, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.