Total edge irregularity strength of trees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 449-456

Voir la notice de l'article provenant de la source Library of Science

A total edge-irregular k-labelling ξ:V(G)∪ E(G) → 1,2,...,k of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that for every tree T of maximum degree Δ on p vertices
Keywords: graph labelling, tree, irregularity strength, total labellings, total edge irregularity strength
@article{DMGT_2006_26_3_a9,
     author = {Ivan\v{c}o, Jaroslav and Jendrol', Stanislav},
     title = {Total edge irregularity strength of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {449--456},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/}
}
TY  - JOUR
AU  - Ivančo, Jaroslav
AU  - Jendrol', Stanislav
TI  - Total edge irregularity strength of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 449
EP  - 456
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/
LA  - en
ID  - DMGT_2006_26_3_a9
ER  - 
%0 Journal Article
%A Ivančo, Jaroslav
%A Jendrol', Stanislav
%T Total edge irregularity strength of trees
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 449-456
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/
%G en
%F DMGT_2006_26_3_a9
Ivančo, Jaroslav; Jendrol', Stanislav. Total edge irregularity strength of trees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 449-456. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/