Total edge irregularity strength of trees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 449-456.

Voir la notice de l'article provenant de la source Library of Science

A total edge-irregular k-labelling ξ:V(G)∪ E(G) → 1,2,...,k of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that for every tree T of maximum degree Δ on p vertices
Keywords: graph labelling, tree, irregularity strength, total labellings, total edge irregularity strength
@article{DMGT_2006_26_3_a9,
     author = {Ivan\v{c}o, Jaroslav and Jendrol', Stanislav},
     title = {Total edge irregularity strength of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {449--456},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/}
}
TY  - JOUR
AU  - Ivančo, Jaroslav
AU  - Jendrol', Stanislav
TI  - Total edge irregularity strength of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 449
EP  - 456
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/
LA  - en
ID  - DMGT_2006_26_3_a9
ER  - 
%0 Journal Article
%A Ivančo, Jaroslav
%A Jendrol', Stanislav
%T Total edge irregularity strength of trees
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 449-456
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/
%G en
%F DMGT_2006_26_3_a9
Ivančo, Jaroslav; Jendrol', Stanislav. Total edge irregularity strength of trees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 449-456. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a9/

[1] M. Aigner and E. Triesch, Irregular assignment of trees and forests, SIAM J. Discrete Math. 3 (1990) 439-449, doi: 10.1137/0403038.

[2] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5.

[3] M. Bača, S. Jendrol' and M. Miller, On total edge irregular labelling of trees, (submitted).

[4] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378–1388, doi: 10.1016/j.disc.2005.11.075.

[5] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254, doi: 10.1002/jgt.10158.

[6] L.A. Cammack, R.H. Schelp and G.C. Schrag, Irregularity strength of full d-ary trees, Congr. Numer. 81 (1991) 113-119.

[7] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.

[8] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137, doi: 10.1002/jgt.10056.

[9] J.A. Gallian, Graph labeling, The Electronic Jounal of Combinatorics, Dynamic Survey DS6 (October 19, 2003).

[10] J. Lehel, Facts and quests on degree irregular assignment, in: Graph Theory, Combin. Appl. vol. 2, Y. Alavi, G. Chartrand, O.R. Oellermann and A.J. Schwenk, eds., (John Wiley and Sons, Inc., 1991) 765-782.

[11] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323, doi: 10.1137/S0895480196314291.

[12] W. D. Wallis, Magic Graphs (Birkhäuser Boston, 2001), doi: 10.1007/978-1-4612-0123-6.