Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_3_a8, author = {Idzik, Adam and Junosza-Szaniawski, Konstanty}, title = {Combinatorial lemmas for polyhedrons {I}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {439--338}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a8/} }
Idzik, Adam; Junosza-Szaniawski, Konstanty. Combinatorial lemmas for polyhedrons I. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 439-338. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a8/
[1] A.D. Alexandrov, Convex Polyhedra (Springer, Berlin, 2005).
[2] R.W. Freund, Variable dimension complexes Part II: A unified approach to some combinatorial lemmas in topology, Math. Oper. Res. 9 (1984) 498-509, doi: 10.1287/moor.9.4.498.
[3] C.B. Garcia, A hybrid algorithm for the computation of fixed points, Manag. Sci. 22 (1976) 606-613, doi: 10.1287/mnsc.22.5.606.
[4] B. Grunbaum, Convex Polytopes (Wiley, London, 1967).
[5] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398.
[6] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for polyhedrons, Discuss. Math. Graph Theory 25 (2005) 95-102, doi: 10.7151/dmgt.1264.
[7] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929) 132-137.
[8] W. Kulpa, Poincaré and Domain Invariance Theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998) 127-136.
[9] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38, doi: 10.1006/jcta.2001.3178.
[10] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math. 15 (1967) 1328-1343, doi: 10.1137/0115116.
[11] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming, New York: Academic Press (1973) 261-290.
[12] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272, doi: 10.1007/BF02940617.