Combinatorial lemmas for polyhedrons I
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 439-338
Voir la notice de l'article provenant de la source Library of Science
We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.
Keywords:
b-balanced simplex, labelling, polyhedron, simplicial complex, Sperner lemma
@article{DMGT_2006_26_3_a8,
author = {Idzik, Adam and Junosza-Szaniawski, Konstanty},
title = {Combinatorial lemmas for polyhedrons {I}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {439--338},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a8/}
}
Idzik, Adam; Junosza-Szaniawski, Konstanty. Combinatorial lemmas for polyhedrons I. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 439-338. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a8/