A note on joins of additive hereditary graph properties
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 413-418.

Voir la notice de l'article provenant de la source Library of Science

Let L^a denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set (L^a, ⊆ ) is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in (L^a, ⊆ ) has a finite or infinite family of minimal forbidden subgraphs.
Keywords: hereditary property, lattice of additive hereditary graph properties, minimal forbidden subgraph family, join in the lattice
@article{DMGT_2006_26_3_a5,
     author = {Drgas-Burchardt, Ewa},
     title = {A note on joins of additive hereditary graph properties},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {413--418},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a5/}
}
TY  - JOUR
AU  - Drgas-Burchardt, Ewa
TI  - A note on joins of additive hereditary graph properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 413
EP  - 418
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a5/
LA  - en
ID  - DMGT_2006_26_3_a5
ER  - 
%0 Journal Article
%A Drgas-Burchardt, Ewa
%T A note on joins of additive hereditary graph properties
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 413-418
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a5/
%G en
%F DMGT_2006_26_3_a5
Drgas-Burchardt, Ewa. A note on joins of additive hereditary graph properties. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 413-418. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a5/

[1] A.J. Berger, Minimal forbidden subgraphs of reducible graph properties, Discuss. Math. Graph Theory 21 (2001) 111-117, doi: 10.7151/dmgt.1136.

[2] A.J. Berger, I. Broere, S.J.T. Moagi and P. Mihók, Meet- and join-irreducibility of additive hereditary properties of graphs, Discrete Math. 251 (2002) 11-18, doi: 10.1016/S0012-365X(01)00323-5.

[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishawa International Publication, Gulbarga, 1991) 41-68.

[4] I. Broere, M. Frick and G.Semanišin, Maximal graphs with respect to hereditary properties, Discuss. Math. Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038.

[5] D.L. Greenwell, R.L. Hemminger and J. Klerlein, Forbidden subgraphs, Proceedings of the 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math., Winnipeg, Man., 1973) 389-394.

[6] J. Jakubik, On the Lattice of Additive Hereditary Properties of Finite Graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73-86.