Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_3_a2, author = {Borowiecki, Mieczys{\l}aw and Fiedorowicz, Anna}, title = {On partitions of hereditary properties of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {377--387}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a2/} }
TY - JOUR AU - Borowiecki, Mieczysław AU - Fiedorowicz, Anna TI - On partitions of hereditary properties of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 377 EP - 387 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a2/ LA - en ID - DMGT_2006_26_3_a2 ER -
Borowiecki, Mieczysław; Fiedorowicz, Anna. On partitions of hereditary properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 377-387. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a2/
[1] P. Boiron, E. Sopena and L. Vignal, Acyclic improper colorings of graphs, J. Graph Theory 32 (1999) 97-107, doi: 10.1002/(SICI)1097-0118(199909)32:197::AID-JGT9>3.0.CO;2-O
[2] P. Boiron, E. Sopena and L. Vignal, Acyclic improper colourings of graphs with bounded degree, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 49 (1999) 1-9.
[3] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3.
[4] O.V. Borodin, A.V. Kostochka, A. Raspaud and E. Sopena, Acyclic colourings of 1-planar graphs, Discrete Applied Math. 114 (2001) 29-41, doi: 10.1016/S0166-218X(00)00359-0.
[5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Acyclic colorings of planar graphs with large girth, J. London Math. Soc. 60 (1999) 344-352, doi: 10.1112/S0024610799007942.
[6] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[7] M.I. Burstein, Every 4-valent graph has an acyclic 5-coloring, Soobsc. Akad. Gruzin. SSR 93 (1979) 21-24 (in Russian).
[8] G. Ding, B. Oporowski, D.P. Sanders and D. Vertigan, Partitioning graphs of bounded tree-width, Combinatorica 18 (1998) 1-12, doi: 10.1007/s004930050001.
[9] R. Diestel, Graph Theory (Springer, Berlin, 1997).
[10] B. Grunbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-412, doi: 10.1007/BF02764716.
[11] P. Mihók and G. Semanišin, Reducible properties of graphs, Discuss. Math. Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002.