The cost chromatic number and hypergraph parameters
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 369-376.

Voir la notice de l'article provenant de la source Library of Science

In a graph, by definition, the weight of a (proper) coloring with positive integers is the sum of the colors. The chromatic sum is the minimum weight, taken over all the proper colorings. The minimum number of colors in a coloring of minimum weight is the cost chromatic number or strength of the graph. We derive general upper bounds for the strength, in terms of a new parameter of representations by edge intersections of hypergraphs.
Keywords: graph coloring, cost chromatic number, intersection number of a hypergraph
@article{DMGT_2006_26_3_a1,
     author = {Bacs\'o, G\'abor and Tuza, Zsolt},
     title = {The cost chromatic number and hypergraph parameters},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {369--376},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a1/}
}
TY  - JOUR
AU  - Bacsó, Gábor
AU  - Tuza, Zsolt
TI  - The cost chromatic number and hypergraph parameters
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 369
EP  - 376
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a1/
LA  - en
ID  - DMGT_2006_26_3_a1
ER  - 
%0 Journal Article
%A Bacsó, Gábor
%A Tuza, Zsolt
%T The cost chromatic number and hypergraph parameters
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 369-376
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a1/
%G en
%F DMGT_2006_26_3_a1
Bacsó, Gábor; Tuza, Zsolt. The cost chromatic number and hypergraph parameters. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 369-376. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a1/

[1] Y. Alavi, P. Erdős, P.J. Malde, A.J. Schwenk and C. Thomassen, Tight bounds on the chromatic sum of a connected graph, J. Graph Theory 13 (1989) 353-357, doi: 10.1002/jgt.3190130310.

[2] U. Feigle, L. Lovász and P. Tetali, Approximating sum set cover, Algorithmica 40 (2004) 219-234, doi: 10.1007/s00453-004-1110-5.

[3] M. Gionfriddo, F. Harary and Zs. Tuza, The color cost of a caterpillar, Discrete Math. 174 (1997) 125-130, doi: 10.1016/S0012-365X(96)00325-1.

[4] E. Kubicka, Constraints on the chromatic sequence for trees and graphs, Congr. Numer. 76 (1990) 219-230.

[5] E. Kubicka and A.J. Schwenk, An introduction to chromatic sums, in: Proc. ACM Computer Science Conference, Louisville (Kentucky) 1989, 39-45.

[6] J. Mitchem and P. Morriss, On the cost chromatic number of graphs, Discrete Math. 171 (1997) 201-211, doi: 10.1016/S0012-365X(96)00005-2.

[7] J. Mitchem, P. Morriss and E. Schmeichel, On the cost chromatic number of outerplanar, planar and line graphs, Discuss. Math. Graph Theory 17 (1997) 229-241, doi: 10.7151/dmgt.1050.

[8] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method (Springer, 2002).

[9] T. Szkaliczki, Routing with minimum wire length in the Dogleg-free Manhattan Model, SIAM Journal on Computing 29 (1999) 274-287, doi: 10.1137/S0097539796303123.

[10] Zs. Tuza, Contractions and minimal k-colorability, Graphs and Combinatorics 6 (1990) 51-59, doi: 10.1007/BF01787480.

[11] Zs. Tuza, Problems and results on graph and hypergraph colorings, Le Matematiche 45 (1990) 219-238.