On uniquely partitionable relational structures and object systems
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 281-289

Voir la notice de l'article provenant de la source Library of Science

We introduce object systems as a common generalization of graphs, hypergraphs, digraphs and relational structures. Let C be a concrete category, a simple object system over C is an ordered pair S = (V,E), where E = A₁,A₂,...,Aₘ is a finite set of the objects of C, such that the ground-set V(A_i) of each object A_i ∈ E is a finite set with at least two elements and V ⊇ ⋃_i=1^m V(A_i). To generalize the results on graph colourings to simple object systems we define, analogously as for graphs, that an additive induced-hereditary property of simple object systems over a category C is any class of systems closed under isomorphism, induced-subsystems and disjoint union of systems, respectively. We present a survey of recent results and conditions for object systems to be uniquely partitionable into subsystems of given properties.
Keywords: graph, digraph, hypergraph, vertex colouring, uniquely partitionable system
@article{DMGT_2006_26_2_a9,
     author = {Bucko, Jozef and Mih\'ok, Peter},
     title = {On uniquely partitionable relational structures and object systems},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {281--289},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/}
}
TY  - JOUR
AU  - Bucko, Jozef
AU  - Mihók, Peter
TI  - On uniquely partitionable relational structures and object systems
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 281
EP  - 289
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/
LA  - en
ID  - DMGT_2006_26_2_a9
ER  - 
%0 Journal Article
%A Bucko, Jozef
%A Mihók, Peter
%T On uniquely partitionable relational structures and object systems
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 281-289
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/
%G en
%F DMGT_2006_26_2_a9
Bucko, Jozef; Mihók, Peter. On uniquely partitionable relational structures and object systems. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 281-289. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/