On uniquely partitionable relational structures and object systems
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 281-289.

Voir la notice de l'article provenant de la source Library of Science

We introduce object systems as a common generalization of graphs, hypergraphs, digraphs and relational structures. Let C be a concrete category, a simple object system over C is an ordered pair S = (V,E), where E = A₁,A₂,...,Aₘ is a finite set of the objects of C, such that the ground-set V(A_i) of each object A_i ∈ E is a finite set with at least two elements and V ⊇ ⋃_i=1^m V(A_i). To generalize the results on graph colourings to simple object systems we define, analogously as for graphs, that an additive induced-hereditary property of simple object systems over a category C is any class of systems closed under isomorphism, induced-subsystems and disjoint union of systems, respectively. We present a survey of recent results and conditions for object systems to be uniquely partitionable into subsystems of given properties.
Keywords: graph, digraph, hypergraph, vertex colouring, uniquely partitionable system
@article{DMGT_2006_26_2_a9,
     author = {Bucko, Jozef and Mih\'ok, Peter},
     title = {On uniquely partitionable relational structures and object systems},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {281--289},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/}
}
TY  - JOUR
AU  - Bucko, Jozef
AU  - Mihók, Peter
TI  - On uniquely partitionable relational structures and object systems
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 281
EP  - 289
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/
LA  - en
ID  - DMGT_2006_26_2_a9
ER  - 
%0 Journal Article
%A Bucko, Jozef
%A Mihók, Peter
%T On uniquely partitionable relational structures and object systems
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 281-289
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/
%G en
%F DMGT_2006_26_2_a9
Bucko, Jozef; Mihók, Peter. On uniquely partitionable relational structures and object systems. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 281-289. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a9/

[1] D. Achlioptas, J.I. Brown, D.G. Corneil and M.S.O. Molloy, The existence of uniquely - G colourable graphs, Discrete Math. 179 (1998) 1-11, doi: 10.1016/S0012-365X(97)00022-8.

[2] B. Bollobás and A. G. Thomason, Uniquely partitionable graphs, J. London Math. Soc. (2) 16 (1977) 403-410.

[3] A. Bonato, Homomorphism and amalgamation, Discrete Math. 270 (2003) 33-42, doi: 10.1016/S0012-365X(02)00864-6.

[4] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[5] J. I. Brown and D. G. Corneil, On generalized graph colourings, J. Graph Theory 11 (1987) 86-99, doi: 10.1002/jgt.3190110113.

[6] I. Broere, J. Bucko and P. Mihók, Criteria for the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties, Discuss. Math. Graph Theory 22 (2002) 31-37, doi: 10.7151/dmgt.1156.

[7] A. Farrugia, Uniqueness and complexity in generalised colouring, Ph.D. thesis, University of Waterloo, April 2003 (available at http://etheses.uwaterloo.ca).

[8] A. Farrugia, P. Mihók, R.B. Richter and G. Semanišin, Factorisations and characterisations of induced-hereditary and compositive properties, J. Graph Theory 49 (2005) 11-27, doi: 10.1002/jgt.20062.

[9] A. Farrugia and R.B. Richter, Unique factorisation of additive induced-hereditary properties, Discuss. Math. Graph Theory 24 (2004) 319-343, doi: 10.7151/dmgt.1234.

[10] R. Fraïssé, Sur certains relations qui generalisent l'ordre des nombers rationnels, C.R. Acad. Sci. Paris 237 (1953) 540-542.

[11] R. Fraïssé, Theory of Relations (North-Holland, Amsterdam, 1986).

[12] F. Harary, S. T. Hedetniemi and R. W. Robinson, Uniquely colourable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4.

[13] J. Jakubík, On the lattice of additive hereditary properties of finite graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73-86.

[14] J. Kratochvíl and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X.

[15] P. Mihók, On the lattice of additive hereditary properties of object-systems, Tatra Mountains Math. Publ. 30 (2005) 155-161.

[16] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58.

[17] P. Mihók, Reducible properties and uniquely partitionable graphs, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 49 (1999) 213-218.

[18] P. Mihók Unique factorization theorems, Discuss. Math. Graph Theory 20 (2000) 143-153, doi: 10.7151/dmgt.1114.

[19] P. Mihók, G. Semanišin and R. Vasky, Additive and Hereditary Properties of Graphs are Uniquely Factorizable into Irreducible Factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:144::AID-JGT5>3.0.CO;2-O

[20] J. Mitchem, Uniquely k-arborable graphs, Israel J. Math. 10 (1971) 17-25, doi: 10.1007/BF02771516.

[21] B.C. Pierce, Basic Category Theory for Computer Scientists (Foundations of Computing Series, The MIT Press, Cambridge, Massachusetts 1991).

[22] J.M.S. Simoes-Pereira, On graphs uniquely partitionable into n-degenerate subgraphs, in: Infinite and Finite Sets, Colloquia Math. Soc. J. Bólyai 10 (1975) 1351-1364.

[23] R. Vasky, Unique factorization theorem for additive induced-hereditary properties of digraphs Studies of the University of Zilina, Mathematical Series 15 (2002) 83-96.