Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_2_a6, author = {Gera, Ralucca and Zhang, Ping}, title = {On stratification and domination in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {249--272}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a6/} }
Gera, Ralucca; Zhang, Ping. On stratification and domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 249-272. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a6/
[1] B. Bollobas and E.J. Cockayne, The irredundance number and maximum degree of a graph, Discrete. Math. 49 (1984) 197-199, doi: 10.1016/0012-365X(84)90118-3.
[2] G. Chartrand, H. Gavlas, M.A. Henning and R. Rashidi, Stratidistance in stratified graphs, Math. Bohem. 122 (1997) 337-347.
[3] G. Chartrand, T.W. Haynes, M.A. Henning and P. Zhang, Stratification and domination in graphs, Discrete Math. 272 (2003) 171-185, doi: 10.1016/S0012-365X(03)00078-5.
[4] G. Chartrand, T.W. Haynes, M.A. Henning and P. Zhang, Stratified claw domination in prisms, J. Combin. Math. Combin. Comput. 33 (2000) 81-96.
[5] G. Chartrand, L. Holley, R. Rashidi and N.A. Sherwani, Distance in stratified graphs, Czech. Math. J. 125 (2000) 135-146.
[6] G. Chartrand and P. Zhang, Introduction to Graph Theory (McGraw-Hill, Boston, 2005).
[7] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
[8] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination, preprint.
[9] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory with Applications to Algorithms and Computer Science, 283-300 (Kalamazoo, MI 1984), Wiley, New York, 1985.
[10] R. Rashidi, The Theory and Applications of Stratified Graphs (Ph.D. Dissertation, Western Michigan University, 1994).