Self-complementary hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 217-224.

Voir la notice de l'article provenant de la source Library of Science

A k-uniform hypergraph H = (V;E) is called self-complementary if there is a permutation σ:V → V, called self-complementing, such that for every k-subset e of V, e ∈ E if and only if σ(e) ∉ E. In other words, H is isomorphic with H' = (V; Vk - E).
Keywords: k-uniform hypergraph, self-complementary hypergraph
@article{DMGT_2006_26_2_a3,
     author = {Wojda, A.},
     title = {Self-complementary hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {217--224},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a3/}
}
TY  - JOUR
AU  - Wojda, A.
TI  - Self-complementary hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 217
EP  - 224
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a3/
LA  - en
ID  - DMGT_2006_26_2_a3
ER  - 
%0 Journal Article
%A Wojda, A.
%T Self-complementary hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 217-224
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a3/
%G en
%F DMGT_2006_26_2_a3
Wojda, A. Self-complementary hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 217-224. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a3/

[1] A. Benhocine and A.P. Wojda, On self-complementation, J. Graph Theory 8 (1985) 335-341, doi: 10.1002/jgt.3190090305.

[2] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs and Combinatorics 8 (1992) 259-276, doi: 10.1007/BF02349963.

[3] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358, doi: 10.1007/BF01234967.

[4] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.

[5] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Mathematica 25/2 (2005) 319-323.

[6] M. Zwonek, A note on self-complementary hypergraphs, Opuscula Mathematica 25/2 (2005) 351-354.