Self-complementary hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 217-224
Cet article a éte moissonné depuis la source Library of Science
A k-uniform hypergraph H = (V;E) is called self-complementary if there is a permutation σ:V → V, called self-complementing, such that for every k-subset e of V, e ∈ E if and only if σ(e) ∉ E. In other words, H is isomorphic with H' = (V; Vk - E).
Keywords:
k-uniform hypergraph, self-complementary hypergraph
@article{DMGT_2006_26_2_a3,
author = {Wojda, A.},
title = {Self-complementary hypergraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {217--224},
year = {2006},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a3/}
}
Wojda, A. Self-complementary hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 217-224. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a3/
[1] A. Benhocine and A.P. Wojda, On self-complementation, J. Graph Theory 8 (1985) 335-341, doi: 10.1002/jgt.3190090305.
[2] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs and Combinatorics 8 (1992) 259-276, doi: 10.1007/BF02349963.
[3] G. Ringel, Selbstkomplementäre Graphen, Arch. Math. 14 (1963) 354-358, doi: 10.1007/BF01234967.
[4] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962) 270-288.
[5] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Mathematica 25/2 (2005) 319-323.
[6] M. Zwonek, A note on self-complementary hypergraphs, Opuscula Mathematica 25/2 (2005) 351-354.