Extremum degree sets of irregular oriented graphs and pseudodigraphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 317-333.

Voir la notice de l'article provenant de la source Library of Science

A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.
Keywords: irregular digraphs, degree sequences, degree sets
@article{DMGT_2006_26_2_a12,
     author = {Dziechci\'nska-Halamoda, Zyta and Majcher, Zofia and Michael, Jerzy and Skupie\'n, Zdzis{\l}aw},
     title = {Extremum degree sets of irregular oriented graphs and pseudodigraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {317--333},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/}
}
TY  - JOUR
AU  - Dziechcińska-Halamoda, Zyta
AU  - Majcher, Zofia
AU  - Michael, Jerzy
AU  - Skupień, Zdzisław
TI  - Extremum degree sets of irregular oriented graphs and pseudodigraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 317
EP  - 333
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/
LA  - en
ID  - DMGT_2006_26_2_a12
ER  - 
%0 Journal Article
%A Dziechcińska-Halamoda, Zyta
%A Majcher, Zofia
%A Michael, Jerzy
%A Skupień, Zdzisław
%T Extremum degree sets of irregular oriented graphs and pseudodigraphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 317-333
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/
%G en
%F DMGT_2006_26_2_a12
Dziechcińska-Halamoda, Zyta; Majcher, Zofia; Michael, Jerzy; Skupień, Zdzisław. Extremum degree sets of irregular oriented graphs and pseudodigraphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 317-333. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/

[1] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdös, R.L. Graham and O.R. Oel lermann, Highly irregular graphs, J. Graph Theory 11 (1987) 235-249, doi: 10.1002/jgt.3190110214.

[2] Y. Alavi, J. Liu and J. Wang, Highly irregular digraphs, Discrete Math. 111 (1993) 3-10, doi: 10.1016/0012-365X(93)90134-F.

[3] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman and Hall, Third edition, 1996).

[4] Z. Dziechcińska-Halamoda, Z. Majcher, J. Michael and Z. Skupień, Large minimal irregular digraphs, Opuscula Mathematica 23 (2003) 21-24.

[5] M. Gargano, J.W. Kennedy and L.V. Quintas, Irregular digraphs, Congress. Numer. 72 (1990) 223-231.

[6] J. Górska and Z. Skupień, Near-optimal irregulation of digraphs, submitted.

[7] J. Górska, Z. Skupień, Z. Majcher and J. Michael, A smallest irregular oriented graph containing a given diregular one, Discrete Math. 286 (2004) 79-88, doi: 10.1016/j.disc.2003.11.049.

[8] J.S. Li and K. Yang, Degree sequences of oriented graphs, J. Math. Study 35 (2002) 140-146.

[9] Z. Majcher and J. Michael, Degree sequences of highly irregular graphs, Discrete Math. 164 (1997) 225-236, doi: 10.1016/S0012-365X(97)84782-6.

[10] Z. Majcher and J. Michael, Highly irregular graphs with extreme numbers of edges, Discrete Math. 164 (1997) 237-242, doi: 10.1016/S0012-365X(96)00056-8.

[11] Z. Majcher and J. Michael, Degree sequences of digraphs with highly irregular property, Discuss. Math. Graph Theory 18 (1998) 49-61, doi: 10.7151/dmgt.1062.

[12] Z. Majcher, J. Michael, J. Górska and Z. Skupień, The minimum size of fully irregular oriented graphs, Discrete Math. 236 (2001) 263-272, doi: 10.1016/S0012-365X(00)00446-5.

[13] A. Selvam, Highly irregular bipartite graphs, Indian J. Pure Appl. Math. 27 (1996) 527-536.

[14] Z. Skupień, Problems on fully irregular digraphs, in: Z. Skupień, R. Kalinowski, guest eds., Discuss. Math. Graph Theory 19 (1999) 253-255, doi: 10.7151/dmgt.1102.