Extremum degree sets of irregular oriented graphs and pseudodigraphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 317-333

Voir la notice de l'article provenant de la source Library of Science

A digraph in which any two vertices have distinct degree pairs is called irregular. Sets of degree pairs for all irregular oriented graphs (also loopless digraphs and pseudodigraphs) with minimum and maximum size are determined. Moreover, a method of constructing corresponding irregular realizations of those sets is given.
Keywords: irregular digraphs, degree sequences, degree sets
@article{DMGT_2006_26_2_a12,
     author = {Dziechci\'nska-Halamoda, Zyta and Majcher, Zofia and Michael, Jerzy and Skupie\'n, Zdzis{\l}aw},
     title = {Extremum degree sets of irregular oriented graphs and pseudodigraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {317--333},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/}
}
TY  - JOUR
AU  - Dziechcińska-Halamoda, Zyta
AU  - Majcher, Zofia
AU  - Michael, Jerzy
AU  - Skupień, Zdzisław
TI  - Extremum degree sets of irregular oriented graphs and pseudodigraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 317
EP  - 333
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/
LA  - en
ID  - DMGT_2006_26_2_a12
ER  - 
%0 Journal Article
%A Dziechcińska-Halamoda, Zyta
%A Majcher, Zofia
%A Michael, Jerzy
%A Skupień, Zdzisław
%T Extremum degree sets of irregular oriented graphs and pseudodigraphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 317-333
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/
%G en
%F DMGT_2006_26_2_a12
Dziechcińska-Halamoda, Zyta; Majcher, Zofia; Michael, Jerzy; Skupień, Zdzisław. Extremum degree sets of irregular oriented graphs and pseudodigraphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 317-333. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a12/