In-degree sequence in a general model of a random digraph
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 193-207.

Voir la notice de l'article provenant de la source Library of Science

A general model of a random digraph D(n,P) is considered. Based on a precise estimate of the asymptotic behaviour of the distribution function of the binomial law, a problem of the distribution of extreme in-degrees of D(n,P) is discussed.
Keywords: degree sequence, general model of a random digraph
@article{DMGT_2006_26_2_a1,
     author = {Palka, Zbigniew and Sperling, Monika},
     title = {In-degree sequence in a general model of a random digraph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {193--207},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a1/}
}
TY  - JOUR
AU  - Palka, Zbigniew
AU  - Sperling, Monika
TI  - In-degree sequence in a general model of a random digraph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 193
EP  - 207
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a1/
LA  - en
ID  - DMGT_2006_26_2_a1
ER  - 
%0 Journal Article
%A Palka, Zbigniew
%A Sperling, Monika
%T In-degree sequence in a general model of a random digraph
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 193-207
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a1/
%G en
%F DMGT_2006_26_2_a1
Palka, Zbigniew; Sperling, Monika. In-degree sequence in a general model of a random digraph. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 193-207. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a1/

[1] B. Bollobás, Degree sequences of random graphs, Discrete Math. 33 (1981) 1-19, doi: 10.1016/0012-365X(81)90253-3.

[2] B. Bollobás, Vertices of given degree in a random graph, J. Graph Theory 6 (1982) 147-155, doi: 10.1002/jgt.3190060209.

[3] P. Erdős and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hung. 12 (1961) 261-267, doi: 10.1007/BF02066689.

[4] W. Feller, An introduction to Probability and Its Applications, Vol. 1, 2nd ed. (John Wiley, 1957).

[5] G. Ivchenko, On the asymptotic behaviour of degrees of vertices in a random graph, Theory Probab. Appl. 18 (1973) 188-196, doi: 10.1137/1118020.

[6] J. Jaworski and I. Smit, On a random digraph, Annals of Discrete Math. 33 (1987) 111-127.

[7] J. Jaworski and M. Karoński, On the connectivity of graphs generated by a sum of random mappings, J. Graph Theory 17 (1993) 135-150, doi: 10.1002/jgt.3190170203.

[8] J. Jaworski and Z. Palka, Remarks on a general model of a random digraph, Ars Combin. 65 (2002) 135-144.

[9] Z. Palka, Extreme degrees in random graphs, J. Graph Theory 11 (1987) 121-134, doi: 10.1002/jgt.3190110202.

[10] Z. Palka, Rulers and slaves in a random graph, Graphs and Combinatorics 2 (1986) 165-172, doi: 10.1007/BF01788089.

[11] Z. Palka, Asymptotic properties of random graphs, Dissertationes Math. (Rozprawy Mat.) 275 (1988).

[12] Z. Palka, Some remarks about extreme degrees in a random graph, Math. Proc. Camb. Philos. Soc. 3 (1994) 13-26.