Leaps: an approach to the block structure of a graph
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 77-90.

Voir la notice de l'article provenant de la source Library of Science

To study the block structure of a connected graph G = (V,E), we introduce two algebraic approaches that reflect this structure: a binary operation + called a leap operation and a ternary relation L called a leap system, both on a finite, nonempty set V. These algebraic structures are easily studied by considering their underlying graphs, which turn out to be block graphs. Conversely, we define the operation +_G as well as the set of leaps L_G of the connected graph G. The underlying graph of +_G, as well as that of L_G, turns out to be just the block closure of G (i.e., the graph obtained by making each block of G into a complete subgraph).
Keywords: leap, leap operation, block, cut-vertex, block closure, block graph
@article{DMGT_2006_26_1_a7,
     author = {Mulder, Henry and Nebesk\'y, Ladislav},
     title = {Leaps: an approach to the block structure of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a7/}
}
TY  - JOUR
AU  - Mulder, Henry
AU  - Nebeský, Ladislav
TI  - Leaps: an approach to the block structure of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 77
EP  - 90
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a7/
LA  - en
ID  - DMGT_2006_26_1_a7
ER  - 
%0 Journal Article
%A Mulder, Henry
%A Nebeský, Ladislav
%T Leaps: an approach to the block structure of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 77-90
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a7/
%G en
%F DMGT_2006_26_1_a7
Mulder, Henry; Nebeský, Ladislav. Leaps: an approach to the block structure of a graph. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a7/

[1] M. Changat, S. Klavžar and H.M. Mulder, The all-path transit function of a graph, Czechoslovak Math. J. 51 (2001) 439-448, doi: 10.1023/A:1013715518448.

[2] F. Harary, A characterization of block graphs, Canad. Math. Bull. 6 (1963) 1-6, doi: 10.4153/CMB-1963-001-x.

[3] F. Harary, Graph Theory (Addison-Wesley, Reading MA, 1969).

[4] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness, and svelte graphs, Discrete Math. 254 (2002) 349-370, doi: 10.1016/S0012-365X(01)00296-5.

[5] H.M. Mulder, The interval function of a graph (MC-tract 132, Mathematish Centrum, Amsterdam 1980).

[6] H.M. Mulder, Transit functions on graphs, in preparation.

[7] L. Nebeský, A characterization of the interval function of a graph, Czechoslovak Math. J. 44 (119) (1994) 173-178.

[8] L. Nebeský, Geodesics and steps in a connected graph, Czechoslovak Math. J. 47 (122) (1997) 149-161.

[9] L. Nebeský, An algebraic characterization of geodetic graphs, Czechoslovak Math. J. 48 (123) (1998) 701-710.

[10] L. Nebeský, A tree as a finite nonempty set with a binary operation, Mathematica Bohemica 125 (2000) 455-458.

[11] L. Nebeský, New proof of a characterization of geodetic graphs, Czechoslovak Math. J. 52 (127) (2002) 33-39.