Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_1_a7, author = {Mulder, Henry and Nebesk\'y, Ladislav}, title = {Leaps: an approach to the block structure of a graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {77--90}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a7/} }
TY - JOUR AU - Mulder, Henry AU - Nebeský, Ladislav TI - Leaps: an approach to the block structure of a graph JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 77 EP - 90 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a7/ LA - en ID - DMGT_2006_26_1_a7 ER -
Mulder, Henry; Nebeský, Ladislav. Leaps: an approach to the block structure of a graph. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a7/
[1] M. Changat, S. Klavžar and H.M. Mulder, The all-path transit function of a graph, Czechoslovak Math. J. 51 (2001) 439-448, doi: 10.1023/A:1013715518448.
[2] F. Harary, A characterization of block graphs, Canad. Math. Bull. 6 (1963) 1-6, doi: 10.4153/CMB-1963-001-x.
[3] F. Harary, Graph Theory (Addison-Wesley, Reading MA, 1969).
[4] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness, and svelte graphs, Discrete Math. 254 (2002) 349-370, doi: 10.1016/S0012-365X(01)00296-5.
[5] H.M. Mulder, The interval function of a graph (MC-tract 132, Mathematish Centrum, Amsterdam 1980).
[6] H.M. Mulder, Transit functions on graphs, in preparation.
[7] L. Nebeský, A characterization of the interval function of a graph, Czechoslovak Math. J. 44 (119) (1994) 173-178.
[8] L. Nebeský, Geodesics and steps in a connected graph, Czechoslovak Math. J. 47 (122) (1997) 149-161.
[9] L. Nebeský, An algebraic characterization of geodetic graphs, Czechoslovak Math. J. 48 (123) (1998) 701-710.
[10] L. Nebeský, A tree as a finite nonempty set with a binary operation, Mathematica Bohemica 125 (2000) 455-458.
[11] L. Nebeský, New proof of a characterization of geodetic graphs, Czechoslovak Math. J. 52 (127) (2002) 33-39.