Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_1_a6, author = {Kostochka, Alexandr and West, Douglas}, title = {Chv\'atal's {Condition} cannot hold for both a graph and its complement}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {73--76}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a6/} }
TY - JOUR AU - Kostochka, Alexandr AU - West, Douglas TI - Chvátal's Condition cannot hold for both a graph and its complement JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 73 EP - 76 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a6/ LA - en ID - DMGT_2006_26_1_a6 ER -
Kostochka, Alexandr; West, Douglas. Chvátal's Condition cannot hold for both a graph and its complement. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 73-76. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a6/
[1] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136, doi: 10.1016/0012-365X(76)90078-9.
[2] V. Chvátal, On Hamilton's ideals, J. Combin. Theory (B) 12 (1972) 163-168, doi: 10.1016/0095-8956(72)90020-2.
[3] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[4] J. Gimbel, D. Kurtz, L. Lesniak, E. Scheinerman and J. Wierman, Hamiltonian closure in random graphs, Random graphs '85 (Poznań, 1985), North-Holland Math. Stud. 144 (North-Holland, 1987) 59-67.
[5] B.D. McKay and N.C. Wormald, The degree sequence of a random graph, I: The models, Random Structures and Algorithms 11 (1997) 97-117, doi: 10.1002/(SICI)1098-2418(199709)11:297::AID-RSA1>3.0.CO;2-O
[6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.
[7] E.M. Palmer, Graphical Evolution: An Introduction to the Theory of Random Graphs (Wiley, 1985).