Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 59-72.

Voir la notice de l'article provenant de la source Library of Science

In a given graph G = (V,E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a c ≥ χ(G) coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by d(G,c).
Keywords: graph coloring, defining set, cartesian product
@article{DMGT_2006_26_1_a5,
     author = {Mojdeh, D.},
     title = {Defining sets in (proper) vertex colorings of the {Cartesian} product of a cycle with a complete graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {59--72},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/}
}
TY  - JOUR
AU  - Mojdeh, D.
TI  - Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 59
EP  - 72
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/
LA  - en
ID  - DMGT_2006_26_1_a5
ER  - 
%0 Journal Article
%A Mojdeh, D.
%T Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 59-72
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/
%G en
%F DMGT_2006_26_1_a5
Mojdeh, D. Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/

[1] J. Cooper, D. Donovan and J. Seberry, Latin squares and critical sets of minimal size, Austral. J. Combin. 4 (1991) 113-120.

[2] M. Mahdian and E.S. Mahmoodian, A characterization of uniquely 2-list colorable graph, Ars Combin. 51 (1999) 295-305.

[3] M. Mahdian, E.S. Mahmoodian, R. Naserasr and F. Harary, On defining sets of vertex colorings of the cartesian product of a cycle with a complete graph, Combinatorics, Graph Theory and Algorithms (1999) 461-467.

[4] E.S. Mahmoodian and E. Mendelsohn, On defining numbers of vertex coloring of regular graphs, 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198 (1999) 543-554.

[5] E.S. Mahmoodian, R. Naserasr and M. Zaker, Defining sets in vertex colorings of graphs and Latin rectangles, Discrete Math. (to appear).

[6] E. Mendelsohn and D.A. Mojdeh, On defining spectrum of regular graph, (submitted).

[7] D.A. Mojdeh, On conjectures of the defining set of (vertex) graph colourings, Austral. J. Combin. (to appear).

[8] A.P. Street, Defining sets for block designs; an update, in: C.J. Colbourn, E.S. Mahmoodian (eds), Combinatorics advances, Mathematics and its applications (Kluwer Academic Publishers, Dordrecht, 1995) 307-320.

[9] D.B. West, Introduction to Graph Theory (Second Edition) (Prentice Hall, USA, 2001).