Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_1_a5, author = {Mojdeh, D.}, title = {Defining sets in (proper) vertex colorings of the {Cartesian} product of a cycle with a complete graph}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {59--72}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/} }
TY - JOUR AU - Mojdeh, D. TI - Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 59 EP - 72 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/ LA - en ID - DMGT_2006_26_1_a5 ER -
Mojdeh, D. Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/
[1] J. Cooper, D. Donovan and J. Seberry, Latin squares and critical sets of minimal size, Austral. J. Combin. 4 (1991) 113-120.
[2] M. Mahdian and E.S. Mahmoodian, A characterization of uniquely 2-list colorable graph, Ars Combin. 51 (1999) 295-305.
[3] M. Mahdian, E.S. Mahmoodian, R. Naserasr and F. Harary, On defining sets of vertex colorings of the cartesian product of a cycle with a complete graph, Combinatorics, Graph Theory and Algorithms (1999) 461-467.
[4] E.S. Mahmoodian and E. Mendelsohn, On defining numbers of vertex coloring of regular graphs, 16th British Combinatorial Conference (London, 1997). Discrete Math. 197/198 (1999) 543-554.
[5] E.S. Mahmoodian, R. Naserasr and M. Zaker, Defining sets in vertex colorings of graphs and Latin rectangles, Discrete Math. (to appear).
[6] E. Mendelsohn and D.A. Mojdeh, On defining spectrum of regular graph, (submitted).
[7] D.A. Mojdeh, On conjectures of the defining set of (vertex) graph colourings, Austral. J. Combin. (to appear).
[8] A.P. Street, Defining sets for block designs; an update, in: C.J. Colbourn, E.S. Mahmoodian (eds), Combinatorics advances, Mathematics and its applications (Kluwer Academic Publishers, Dordrecht, 1995) 307-320.
[9] D.B. West, Introduction to Graph Theory (Second Edition) (Prentice Hall, USA, 2001).