Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 59-72
Voir la notice de l'article provenant de la source Library of Science
In a given graph G = (V,E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a c ≥ χ(G) coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by d(G,c).
Keywords:
graph coloring, defining set, cartesian product
@article{DMGT_2006_26_1_a5,
author = {Mojdeh, D.},
title = {Defining sets in (proper) vertex colorings of the {Cartesian} product of a cycle with a complete graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {59--72},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/}
}
TY - JOUR AU - Mojdeh, D. TI - Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 59 EP - 72 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/ LA - en ID - DMGT_2006_26_1_a5 ER -
Mojdeh, D. Defining sets in (proper) vertex colorings of the Cartesian product of a cycle with a complete graph. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 59-72. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a5/