Extension of several sufficient conditions for Hamiltonian graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 23-39.

Voir la notice de l'article provenant de la source Library of Science

Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖u)|+d(u) ≥ n-1. Using the concept of dual closure, we prove that
Keywords: hamiltonian graph, dual closure, neighborhood closure
@article{DMGT_2006_26_1_a2,
     author = {Ainouche, Ahmed},
     title = {Extension of several sufficient conditions for {Hamiltonian} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--39},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a2/}
}
TY  - JOUR
AU  - Ainouche, Ahmed
TI  - Extension of several sufficient conditions for Hamiltonian graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 23
EP  - 39
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a2/
LA  - en
ID  - DMGT_2006_26_1_a2
ER  - 
%0 Journal Article
%A Ainouche, Ahmed
%T Extension of several sufficient conditions for Hamiltonian graphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 23-39
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a2/
%G en
%F DMGT_2006_26_1_a2
Ainouche, Ahmed. Extension of several sufficient conditions for Hamiltonian graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 23-39. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a2/

[1] A. Ainouche and N. Christofides, Semi-independence number of a graph and the existence of hamiltonian circuits, Discrete Applied Math. 17 (1987) 213-221, doi: 10.1016/0166-218X(87)90025-4.

[2] A. Ainouche, A common generalization of Chvàtal-Erdös and Fraisse's sufficient conditions for hamiltonian graphs, Discrete Math. 142 (1995) 1-19, doi: 10.1016/0012-365X(94)00002-Z.

[3] A. Ainouche, Extensions of a closure condition: the β-closure (Rapport de Recherche CEREGMIA, 2001).

[4] A. Ainouche and I. Schiermeyer, 0-dual closure for several classes of graphs, Graphs and Combinatorics 19 (2003) 297-307, doi: 10.1007/s00373-002-0523-y.

[5] A. Ainouche and S. Lapiquonne, Variations on a strong sufficient condition for hamiltonian graphs, submitted.

[6] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Dept. of Combinatorics and Optimization, University of Waterloo, Ont. Canada.

[7] J.A. Bondy and V. Chvàtal, A method in graph theory, Discrete Math. 15 (1976) 111-135, doi: 10.1016/0012-365X(76)90078-9.

[8] G. Chen, One sufficient condition for Hamiltonian Graphs, J. Graph Theory 14 (1990) 501-508, doi: 10.1002/jgt.3190140414.

[9] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[10] R.J. Faudree, R.J. Gould, M.S. Jacobson and L.S. Lesniak, Neighborhood unions and highly Hamiltonian Graphs, Ars Combin. 31 (1991) 139-148.

[11] R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Shelp, Neighborhood unions and Hamiltonian properties in Graphs, J. Combin. Theory (B) 47 (1989) 1-9, doi: 10.1016/0095-8956(89)90060-9.

[12] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degrees sums and neighborhood intersections, Discrete Math. 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I.

[13] P. Fraisse, A new sufficient condition for Hamiltonian Graphs, J. Graph Theory 10 (1986) 405-409, doi: 10.1002/jgt.3190100316.

[14] T. Feng, A note on the paper A new sufficient condition for hamiltonian graph, Systems Sci. Math. Sci. 5 (1992) 81-83.

[15] I. Schiermeyer, Computation of the 0-dual closure for hamiltonian graphs, Discrete Math. 111 (1993) 455-464, doi: 10.1016/0012-365X(93)90183-T.

[16] O. Ore, Note on Hamiltonian circuits, Am. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.